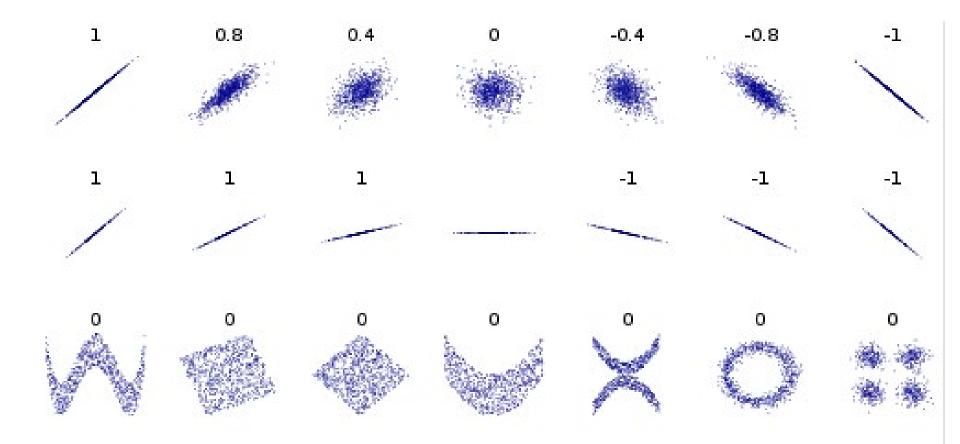
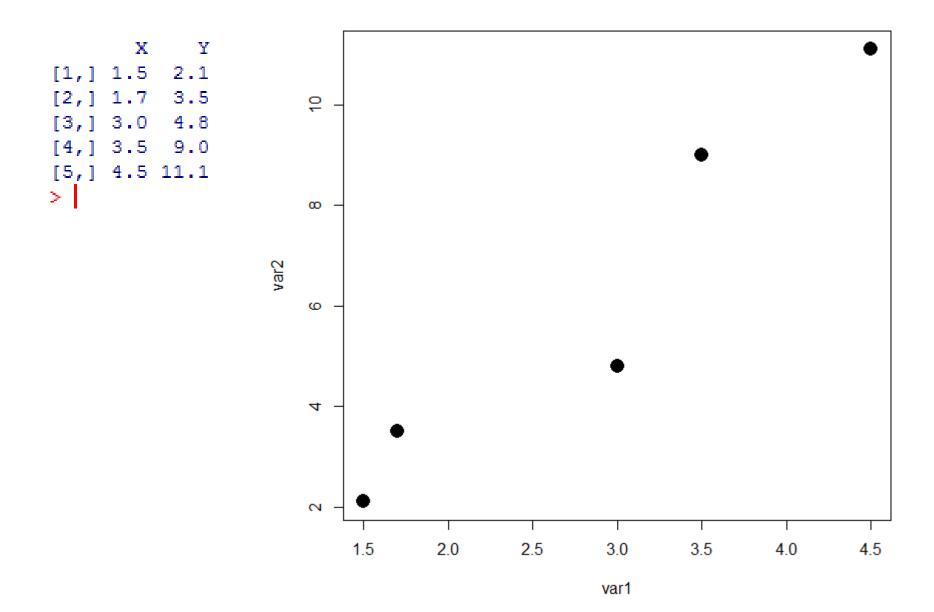
Correlation and Covariance

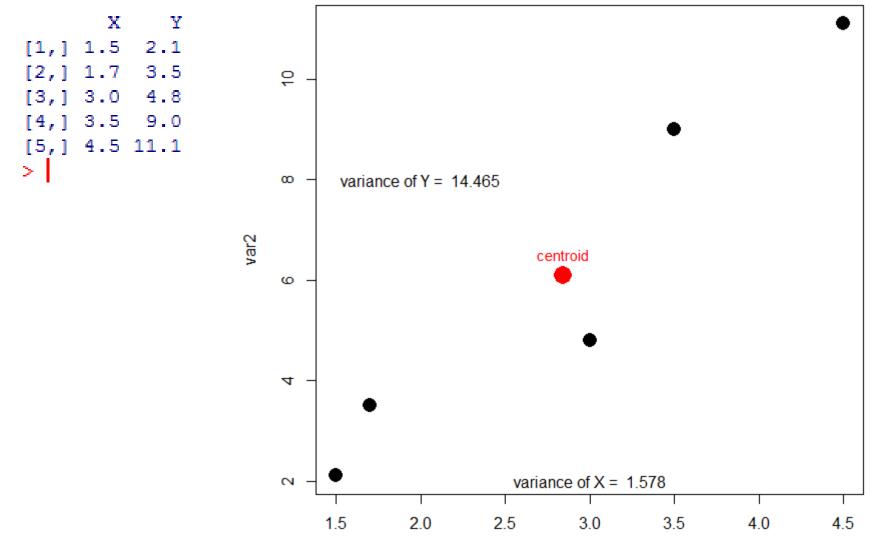


Pearson's Correlation *r* for various bivariate scatter plots (Source: Wikipedia).

Let's consider a simple bivariate dataset with 5 observations described by two continuous variables X and Y

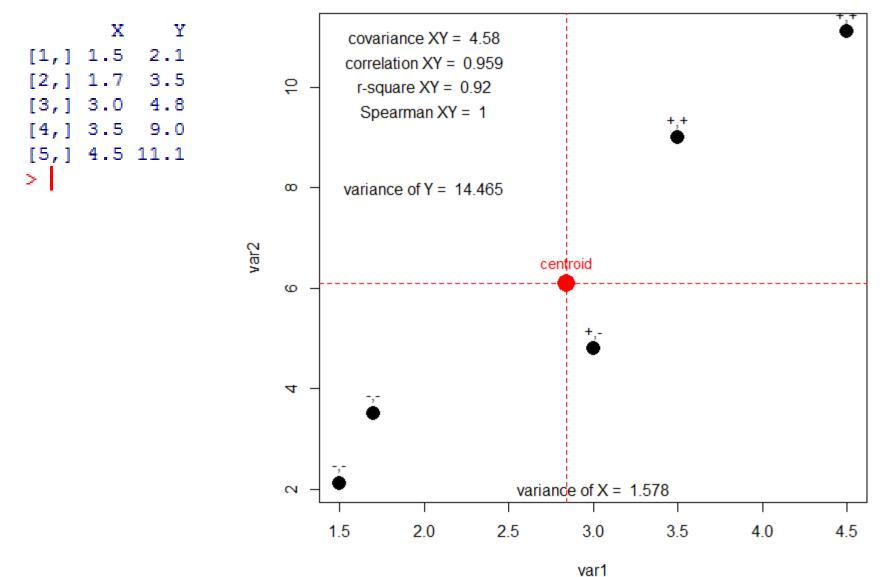


Note that variables differ notably in variance (Y is much more variable than X) Red dot marks a 'centroid': a bivariate arithmetic mean defined by mean X and mean Y



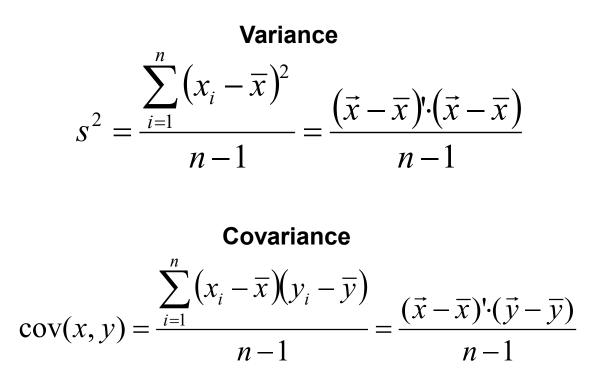
Covariance and Pearson's correlation both measure the strength and direction (positive or negative) of interrelations of X and Y

R-square is discussed in the subsequent lecture about regression Spearman rank correlation is a rank-based measure of association.



EXERCISE: Let's compute covariance and Pearson correlation by hand

$$r_{xy} = \frac{\operatorname{cov}(x, y)}{s_x s_y} = \frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^n (x_i - \overline{x})} \sqrt{\sum_{i=1}^n (y_i - \overline{y})}}$$



Pearson's Correlation – Covariance standardized for variance (covariance divided by product of standard deviations)

$$r_{xy} = \frac{\text{cov}(x, y)}{s_x s_y} = \frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^n (x_i - \overline{x})^2} \sqrt{\sum_{i=1}^n (y_i - \overline{y})^2}}$$

Summary I

Variance (one variable x) – Sum of Squares/(n-1)

Covariance (for two variables: x, y) – Sum of products of deviations of x and y

Is magnitude of covariance independent from magnitude of variance? NO

What is the possible range of values for covariance? - ∞ to ∞

Is magnitude of correlation independent from magnitude of variance? YES

What is the possible range of values for Pearson's correlation? -1 to 1

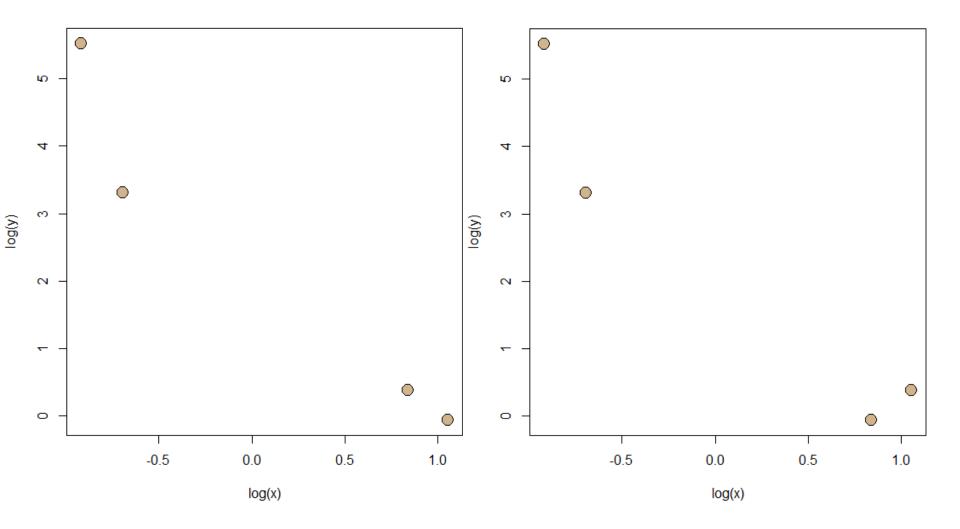
Spearman Rank Correlation

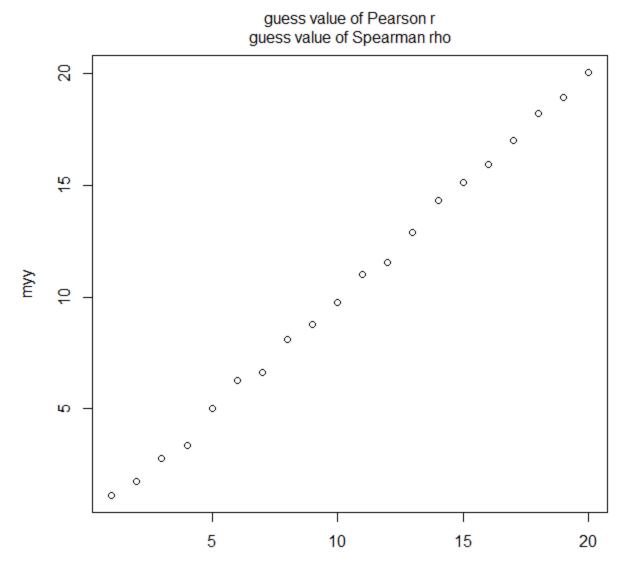
Pearson	Spearman				
$r_{xy} = \frac{\operatorname{cov}(x, y)}{s_x s_y}$	$r_{xy} = \frac{\operatorname{cov}(r_x, r_y)}{S_{r_x}S_{r_y}}$				
xy2.870.942.321.460.527.50.4250	x y 4 1 3 2 2 3 1 4				
sd(x): 1.259269 sd(y): 120.6555	sd: 1.290994 sd: 1.290994				
cov: -102.143	cov: -1.666667				
r = -102.143 / (1.259269* 120.6555)	r = -1.6666667 / (1.290994*1.290994)				
r = -0.6720137	r = -1				

Spearman Rank Correlation

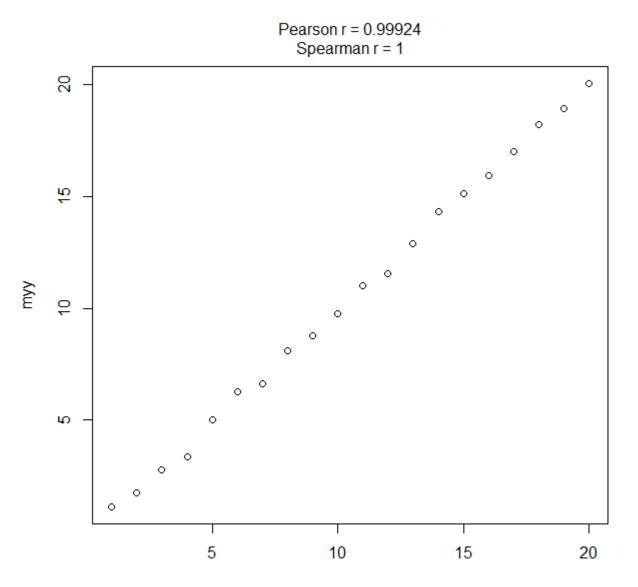
Pearson	Spearman				
$r_{xy} = \frac{\operatorname{cov}(x, y)}{s_x s_y}$	$r_{xy} = \frac{\text{cov}(r_x, r_y)}{S_{r_x}S_{r_y}}$				
xy2.320.942.871.460.527.50.4250	x y 3 1 4 2 2 3 1 4				
sd(x): 1.259269 sd(y): 120.6555	sd: 1.290994 sd: 1.290994				
cov: -102.0089 (-102.143)	cov: -1.333333 (-1.666667)				
r = -102.0089 / (1.259269* 120.6555)	r = -1.3333333 / (1.290994*1.290994)				
r = -0.6713862 (-0.6720137)	r = -0.8 (-1)				

Pearson r = -0.9660809Spearman = 1 Pearson r = -0.9544169Spearman = 0.8

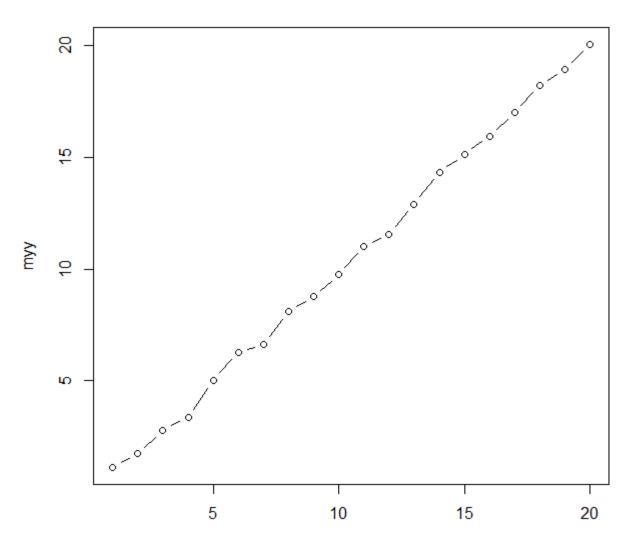




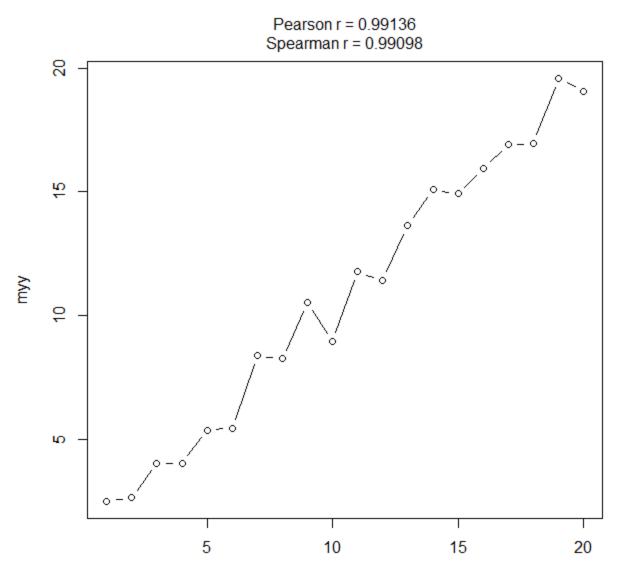
myx



Two monotonically related variables will yield Spearman = 1 (or -1)

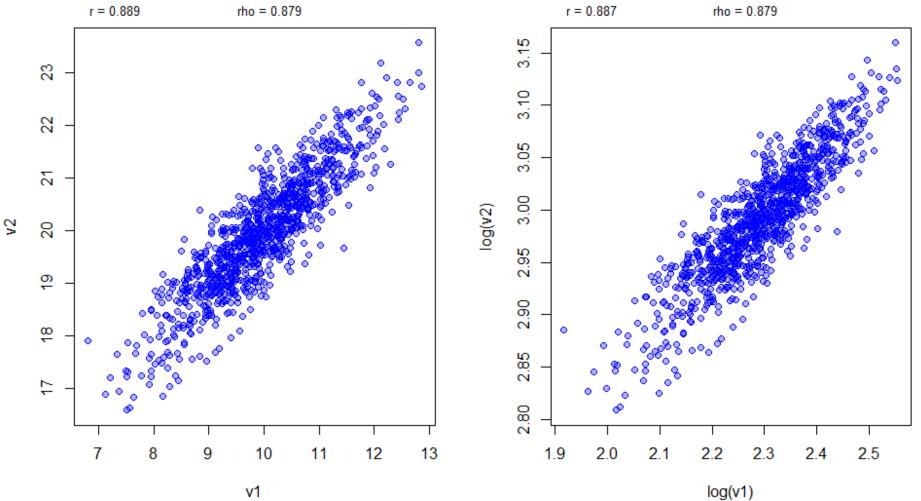


myx



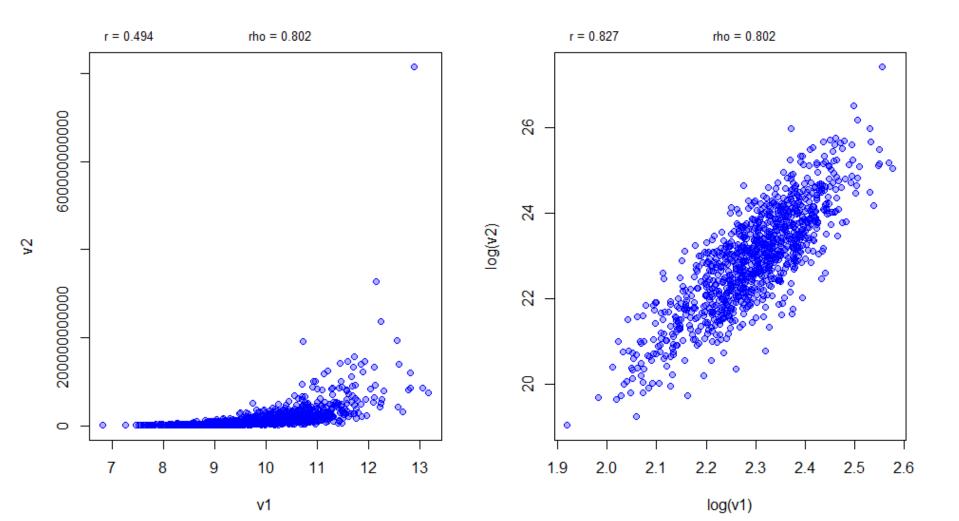
myx

normally distributed and well-behaved data

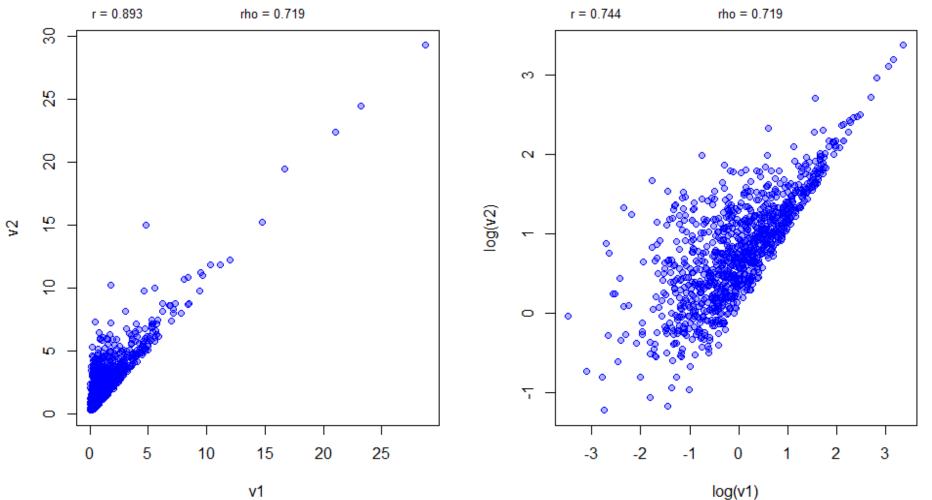


v1

two non-linearly correlated variables (log-transformation often linearizes the relationship)

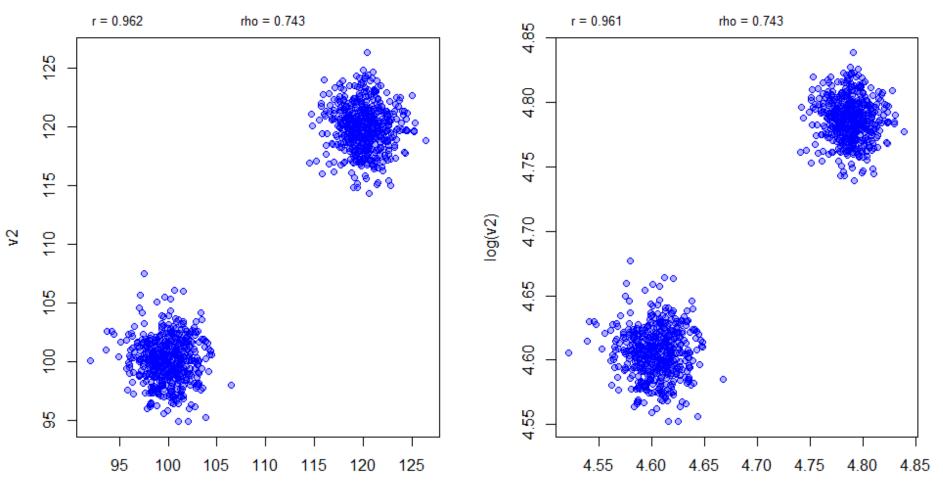


two correlated variables from non-normal distribution



v1

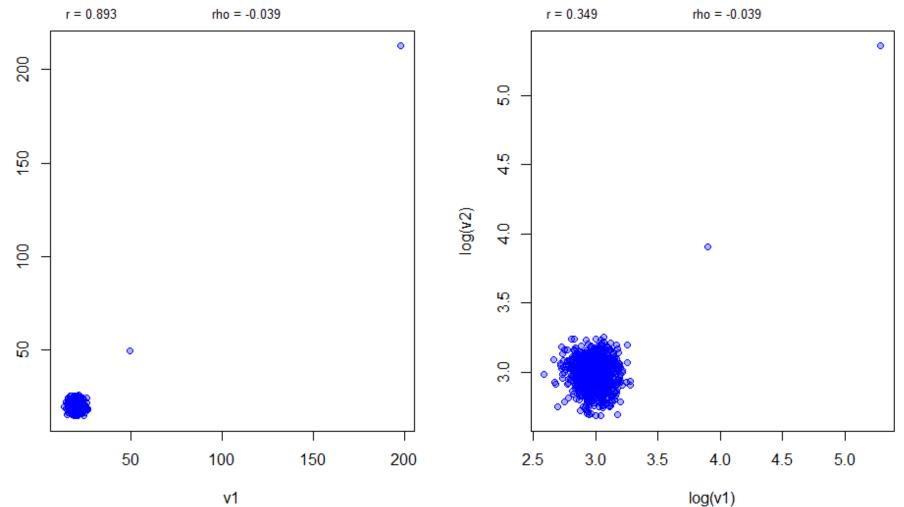
two variables with bimodal distribution



v1

log(v1)

Outliers (rank correlation much more immune to extreme outliers



v1

22

Kendall Rank Correlation

	number of concordant pairs – number of discordant pairs											
		$\tau = \frac{0.5 * n * (n-1)}{0.5 * n * (n-1)}$										
		$ \tau_B = \frac{number\ of\ concordan}{r_B} $	Tau-B Is used by {cor} and {cor.te functions in <i>R</i>									
	$0.5 * n * (n - 1)$ – total number of possible comparisons $\sqrt{t_1} * \sqrt{t_2}$ –total number of possible comparisons (if no ties)											
Pearson t_1 – number of non-ties in x, and t_2 n				umber of r	non-ties in y	Kendall						
		y 0.94 1.46 27.5 250 sd(y): 120.6555		Rank o 4 3 2 1 4 > 3 4 > 2 4 > 1 3 > 2	of x but but but but	1 2 3 4 1 < 2 1 < 2	2 discordant pair 3 discordant pair 4 discordant pair 3 discordant pair 3 discordant pair					
	cov: -102.143			3 > 1	but	2 < 4	4 discordant pair					
	r = -102.143 / (1 r = -0.6720137	.259269* 120.6555)		 2 > 1 but 3 < 4 discordant pair 0 concordant and 6 discordant pairs 6 possible comparisons 								
				$\tau = \tau_B = \frac{0-6}{\sqrt{6}*\sqrt{6}} = -1$								

Summary II

Rank correlation coefficients vary from -1 to 1

Rank correlation must be 1 (or -1) if relation is monotonic

Rank correlation of x and y is the same as rank correlation of log(x) and log(y) (log transformation is monotonic)

Pearson correlation of x and y is <u>NOT</u> the same as Pearson correlation of log(x) and log(y)

Rank correlations tend to be less sensitive to outliers and non-normality

Rank correlations is more suitable for discrete variables

Neither rank correlation nor Pearson correlation can handle strongly bimodal (or multimodal) data

Testing for significance of correlation coefficient r

Parametric tests (t-statistic or F-statistic) assume bivariate normal distribution

$$H_0: r = 0$$
$$H_A: r \neq 0$$
$$t = r * \sqrt{\frac{n-2}{1-r^2}}$$

df = *n* - 2

p = p(t, df, 2-tailed)

Why are there multiple different equations for *t* ?

Are they merely modified variants of the canonical form?

$$t = r * \sqrt{\frac{n-2}{1-r^2}} \qquad \qquad t = \frac{x-\mu}{\frac{s_x}{\sqrt{n}}}$$

Which of the two is the more correct function for defining t distribution? First? Second? Either? Neither? Why is this equation different from t-test equation for means?

$$t = r * \sqrt{\frac{n-2}{1-r^2}} \qquad \qquad t = \frac{x-\mu}{\frac{s_x}{\sqrt{n}}}$$

Which of the two is the more correct function for defining t distribution?

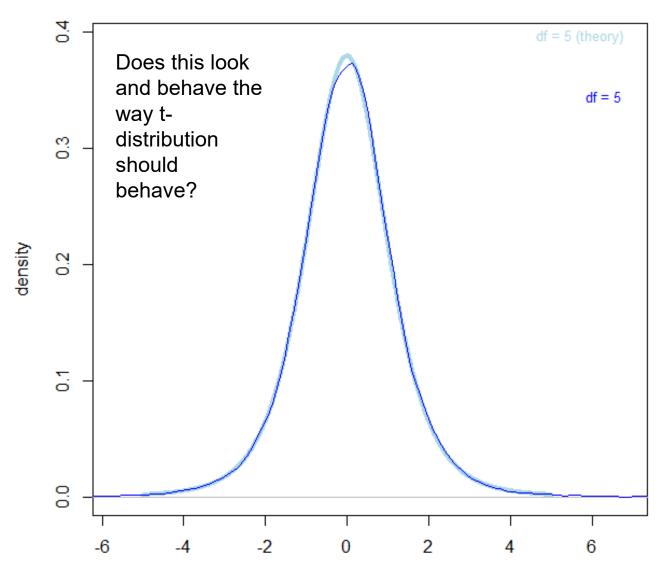
Neither!

$$\begin{split} t - \text{probability density function} \\ f(t) &= \frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\nu\pi}\,\Gamma(\frac{\nu}{2})} \left(1 + \frac{t^2}{\nu}\right)^{-\frac{\nu+1}{2}}, \end{split}$$

Various equations for *t*-statistic are not synonymous with *t* function. These equations produce estimates that are approximately *t* distributed <u>when</u> <u>assumptions are met</u>

 $t = r * \sqrt{\frac{n-2}{1-r^2}}$

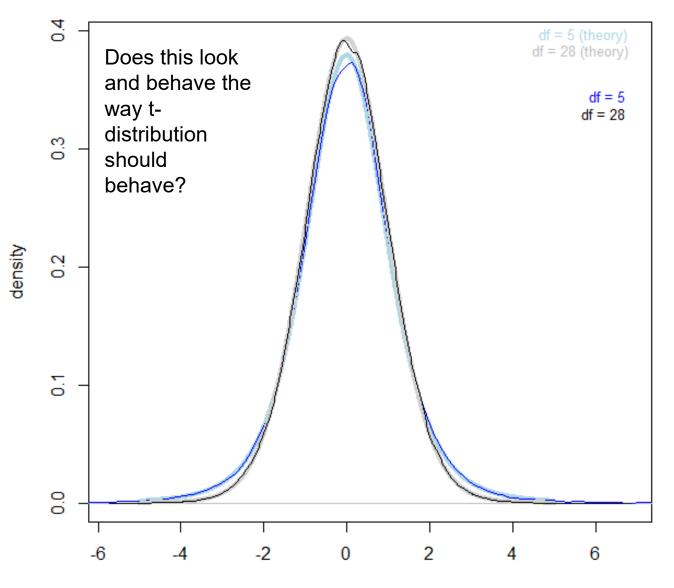
Simulated distribution of *t* values for n = 7 for two uncorrelated samples drawn from normal distribution



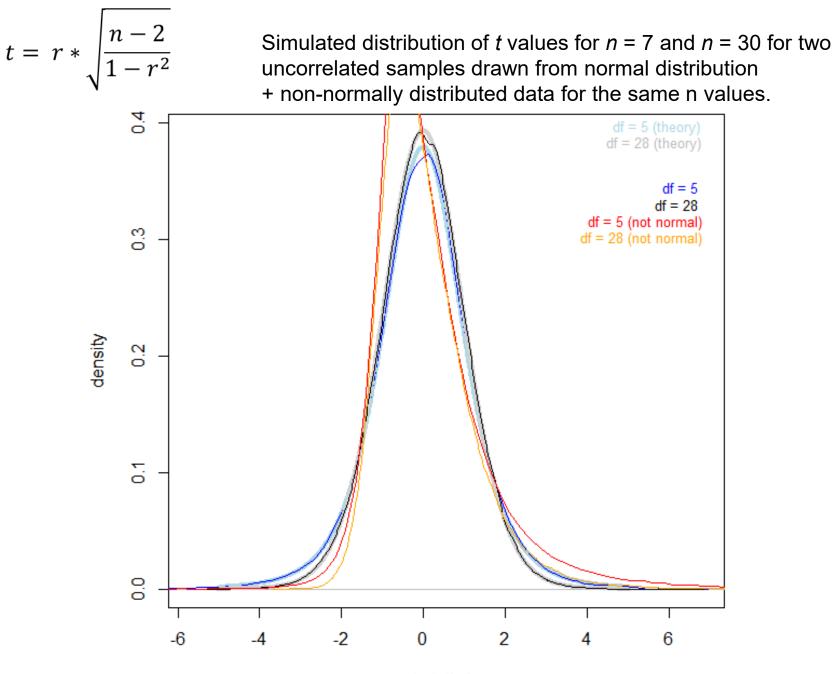
t-statistic

 $t = r * \sqrt{\frac{n-2}{1-r^2}}$

Simulated distribution of *t* values for n = 7 and n = 30 for two uncorrelated samples drawn from normal distribution



t-statistic



t-statistic