
Correlation and Covariance
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Pearson’s Correlation r for various bivariate scatter plots (Source: Wikipedia).



Let’s consider a simple bivariate dataset with 5 observations described by two 
continuous variables X and Y



Note that variables differ notably in variance (Y is much more variable than X)
Red dot marks a ‘centroid’: a bivariate arithmetic mean defined by mean X and mean Y



Covariance and Pearson’s correlation both measure the strength and direction (positive 
or negative) of interrelations of X and Y

R-square is discussed in the subsequent lecture about regression
Spearman rank correlation is a rank-based measure of association.



EXERCISE: Let’s compute covariance and Pearson correlation by hand
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Variance

( ) ( ) ( )
1

'
1

1

2

2

−
−⋅−

=
−

−
=
∑
=

n
xxxx

n

xx
s

n

i
i 

( )( )

1
)()'(

1
),cov( 1

−
−⋅−

=
−

−−
=
∑
=

n
yyxx

n

yyxx
yx

n

i
ii 

Covariance

Pearson’s Correlation – Covariance standardized for variance (covariance divided by 
product of standard deviations)
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Summary I

Variance (one variable x) – Sum of Squares/(n-1)

Covariance (for two variables: x, y) – Sum of products of deviations of x and y

Is magnitude of covariance independent from magnitude of variance? NO

What is the possible range of values for covariance? -∞ to ∞ 

Is magnitude of correlation independent from magnitude of variance? YES

What is the possible range of values for Pearson’s correlation? -1 to 1
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Spearman Rank Correlation
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x y
2.87 0.94
2.32 1.46
0.5 27.5
0.4 250

sd(x): 1.259269 sd(y): 120.6555

cov: -102.143

r = -102.143 / (1.259269* 120.6555)

r = -0.6720137

x y
4 1
3 2
2 3
1 4

sd: 1.290994 sd: 1.290994

cov: -1.666667

r = -1.666667 / (1.290994*1.290994)

r = -1

Pearson Spearman
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Spearman Rank Correlation
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x y
2.32 0.94
2.87 1.46
0.5 27.5
0.4 250

sd(x): 1.259269 sd(y): 120.6555

cov: -102.0089 (-102.143)

r = -102.0089 / (1.259269* 120.6555)

r = -0.6713862 (-0.6720137)

x y
3 1
4 2
2 3
1 4

sd: 1.290994 sd: 1.290994

cov: -1.333333 (-1.666667)

r = -1.333333 / (1.290994*1.290994)

r = -0.8 (-1)

Pearson Spearman



Pearson r = - 0.9544169
Spearman = 0.8

Pearson r = - 0.9660809
Spearman = 1



Spearman versus Pearson



Spearman versus Pearson



Spearman versus Pearson

Two monotonically related variables will yield Spearman = 1 (or -1)



Spearman versus Pearson



Spearman versus Pearson

normally distributed and well-behaved data



Spearman versus Pearson

two non-linearly correlated variables
(log-transformation often linearizes the relationship)



Spearman versus Pearson

two correlated variables from non-normal distribution



Spearman versus Pearson

two variables with bimodal distribution



Spearman versus Pearson

Outliers
(rank correlation much more immune to extreme outliers



Kendall Rank Correlation

x y
2.87 0.94
2.32 1.46
0.5 27.5
0.4 250

sd(x): 1.259269 sd(y): 120.6555

cov: -102.143

r = -102.143 / (1.259269* 120.6555)

r = -0.6720137

Pearson Kendall

Tau-B Is used by 
{cor} and {cor.test} 
functions in R

t1 – number of non-ties in x, and t2 number of non-ties in y



Summary II

Rank correlation coefficients vary from -1 to 1

Rank correlation must be 1 (or -1) if relation is monotonic

Rank correlation of x and y is the same as rank correlation of log(x) and log(y)
(log transformation is monotonic)

Pearson correlation of x and y is NOT the same as Pearson correlation of log(x) and log(y)

Rank correlations tend to be less sensitive to outliers and non-normality

Rank correlations is more suitable for discrete variables

Neither rank correlation nor Pearson correlation can handle strongly bimodal (or 
multimodal) data



H0: r = 0
HA: r ≠ 0

Testing for significance of correlation coefficient r

Parametric tests (t-statistic or F-statistic) assume bivariate normal distribution

df = n - 2 

p = p(t, df, 2-tailed)



Why are there multiple different equations for t ?

Are they merely modified variants of the canonical form?

Which of the two is the more correct function for defining t distribution?
First? Second? Either? Neither? 



Why is this equation different from t-test equation for means?

Which of the two is the more correct function for defining t distribution?

Neither!
t – probability density function

Various equations for t-statistic are not synonymous with t function. These 
equations produce estimates that are approximately t distributed when 
assumptions are met



Simulated distribution of t values for n = 7 for two uncorrelated 
samples drawn from normal distribution

Does this look 
and behave the 
way t-
distribution 
should 
behave?



Simulated distribution of t values for n = 7 and n = 30 for two 
uncorrelated samples drawn from normal distribution

Does this look 
and behave the 
way t-
distribution 
should 
behave?



Simulated distribution of t values for n = 7 and n = 30 for two 
uncorrelated samples drawn from normal distribution
+ non-normally distributed data for the same n values.
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