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Bayesian Approaches

• Formalism for updating prior belief in the face of 
new evidence


• It is the analytical use of prior belief that sets it apart 
from frequentist and likelihood approaches — and 
made it controversial
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Conceptions of Probability

• Frequentist:  event probabilities defined by their 
frequency in an infinitely long sequence of trials


• obviously not practical


• some events really can’t be repeated (e.g., probability 
France wins next World Cup)


• Bayesian:  subjective probability, reflects one’s 
uncertainty about events


• may differ from person to person


• can be treated the same as data?


• arguably, frequentist also are swayed by prior belief, 
but only haphazardly



Bayesian Approaches

• Many practical forms of reasoning are inherently 
Bayesian, e.g. doctor’s diagnosis

ailment symptom

none none

migraine headache

brain tumor headache

Migraine and Brain Tumor are equally consistent with the 
evidence (same likelihood), but have different priors.



Bayes Theorem

p(θ |x) =
p(θ)p(x |θ)

p(x)
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Bayes Theorem

p(θ |x) =
p(θ)p(x |θ)

p(x)

• Posterior probability is what we want — probability 
hypothesis is true!


• With increasing data, likelihood term usually 
overwhelms the priors



Example: Lost Wallets

• Worked example from Wang (2010)


• Television program Prime Time did a hidden camera 
experiment to investigate whether police officers 
would return a supposedly lost wallet filled with cash.


• Parameter: p, the probability of dishonest officers



Wallet Prior
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FIGURE 3.—Prior, likelihood, and posterior for Ex-
ample 10 (lost wallets). 1, Beta(2, 3) prior distribution, 
f(p). Here p denotes the probability that a police officer 
will steal some of the cash in a supposedly lost wallet 
before attempting to return it to its owner. This curve 
reflects the consensus prior belief of students in my 
classes in which I present this example. The highest 
a priori probability is concentrated near p = .3, with 
substantial weight given to values between .1 and .6 as 
well. 2, Likelihood L(p) given that x = 0 was observed. 
Values of p near zero are the most likely, given that no 
officers out of 40 stole any cash before returning the 
wallet. 3, Beta(2, 43) posterior distribution, f(p | x), 
obtained by multiplying the prior and the likelihood 
for each value of p. The curve reflects our prior belief 
about p, as well as the observed data x. Even though 
our prior belief was concentrated near p = .3, the ob-
served data x = 0 has “pushed” the posterior probability 
towards p = 0. 

was a .3 probability that an officer would be dishonest; 
presumably we should revise that estimate downwards 
in light of PrimeTime’s results. By how much should 
we do so? What we need now is the probability of p 
given our observed data x, which we notate as f(p̓ | x). 
This quantity is called the posterior distribution (often 
referred to as simply “the posterior”), because it quan-
tifies our knowledge of p after observing the data x. 

How do we calculate f(p̓ | x) using f(x) and f(x | p) 
from the previous two steps? Here we use Bayes Theo-
rem, a well-known result that tells us how to “reverse” 
conditional probabilities (Casella and Berger 2002, 
section 1.3). Let A and B denote two discrete events; 
then Bayes Theorem states the following:

   

Letting B = p and A = x and using the notation of 
continuous probability distributions rather than discrete 
events, we have

Notice that because the denominator does not 
depend on p, in many cases we can simply ignore it. 
Our goal is usually to find the relative probabilities of 
different values of p—for instance, how much more 
probable is p = .3 compared to p = .5 or p = .8. In that 
case, the denominator is merely a scaling factor that 
multiplies the probabilities for all values of p by the 
same amount. In a graph of the posterior such as Figure 
3.3, this scaling factor will affect only the vertical scale 
of the graph (i.e., the labels on the y-axis) but not its 
shape, which is usually what is important. Therefore, to 
update our prior in light of the observed data, we need 
only multiply the prior and the likelihood:

Our posterior for the proportion of dishonest 
police officers is therefore

Combining similar terms gives us

 

• Beta(2,3) for prior


• informative; could have 
chosen uniform




Wallet Likelihood

p(x |p) =
n!

x!(n − x)!
px(1 − p)n−x• The data: x = 0 

dishonest cops out of n 
= 40


• Likelihood computed 
from the binomial 
density function
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was a .3 probability that an officer would be dishonest; 
presumably we should revise that estimate downwards 
in light of PrimeTime’s results. By how much should 
we do so? What we need now is the probability of p 
given our observed data x, which we notate as f(p̓ | x). 
This quantity is called the posterior distribution (often 
referred to as simply “the posterior”), because it quan-
tifies our knowledge of p after observing the data x. 

How do we calculate f(p̓ | x) using f(x) and f(x | p) 
from the previous two steps? Here we use Bayes Theo-
rem, a well-known result that tells us how to “reverse” 
conditional probabilities (Casella and Berger 2002, 
section 1.3). Let A and B denote two discrete events; 
then Bayes Theorem states the following:

   

Letting B = p and A = x and using the notation of 
continuous probability distributions rather than discrete 
events, we have

Notice that because the denominator does not 
depend on p, in many cases we can simply ignore it. 
Our goal is usually to find the relative probabilities of 
different values of p—for instance, how much more 
probable is p = .3 compared to p = .5 or p = .8. In that 
case, the denominator is merely a scaling factor that 
multiplies the probabilities for all values of p by the 
same amount. In a graph of the posterior such as Figure 
3.3, this scaling factor will affect only the vertical scale 
of the graph (i.e., the labels on the y-axis) but not its 
shape, which is usually what is important. Therefore, to 
update our prior in light of the observed data, we need 
only multiply the prior and the likelihood:

Our posterior for the proportion of dishonest 
police officers is therefore

Combining similar terms gives us

 



Wallet Posterior
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was a .3 probability that an officer would be dishonest; 
presumably we should revise that estimate downwards 
in light of PrimeTime’s results. By how much should 
we do so? What we need now is the probability of p 
given our observed data x, which we notate as f(p̓ | x). 
This quantity is called the posterior distribution (often 
referred to as simply “the posterior”), because it quan-
tifies our knowledge of p after observing the data x. 

How do we calculate f(p̓ | x) using f(x) and f(x | p) 
from the previous two steps? Here we use Bayes Theo-
rem, a well-known result that tells us how to “reverse” 
conditional probabilities (Casella and Berger 2002, 
section 1.3). Let A and B denote two discrete events; 
then Bayes Theorem states the following:

   

Letting B = p and A = x and using the notation of 
continuous probability distributions rather than discrete 
events, we have

Notice that because the denominator does not 
depend on p, in many cases we can simply ignore it. 
Our goal is usually to find the relative probabilities of 
different values of p—for instance, how much more 
probable is p = .3 compared to p = .5 or p = .8. In that 
case, the denominator is merely a scaling factor that 
multiplies the probabilities for all values of p by the 
same amount. In a graph of the posterior such as Figure 
3.3, this scaling factor will affect only the vertical scale 
of the graph (i.e., the labels on the y-axis) but not its 
shape, which is usually what is important. Therefore, to 
update our prior in light of the observed data, we need 
only multiply the prior and the likelihood:

Our posterior for the proportion of dishonest 
police officers is therefore

Combining similar terms gives us

 

Beta( a, b )

Binom( p )

Beta( a + x, b + n - x )

Beta( 2, 3 )

Binom( x = 0, n = 40 )

Beta( 2, 43 )

Beta is the conjugate prior for Binomial data



Summarizing the Posterior

• Because known analytical 
form, we can compute useful 
summaries of the posterior


• Mean of posterior is taken as 
point estimate for parameter


• Mean of Beta(a, b) is a/(a+b) = 
2 / (2 + 43) = 0.044 


• Can compute 95% credible 
intervals from quantiles of 
Beta distribution

Beta( 2, 43 )

qbeta(p = c(0.025, 0.975), 2, 43)  # (0.005, 0.12)
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Markov Chain Monte Carlo (MCMC)

• Wallet example was particularly simple; we know 
the analytical form of the posterior


• Usually, there are many variables and the posterior 
is analytically intractable. 


• MCMC algorithms approximate the posterior 
distribution by generating samples from it.


• There are multiple MCMC algorithms available: 
Metropolis, Metropolis-Hastings, Gibbs sampler, 
Hamiltonian Monte Carlo…



Metropolis Algorithm

Simplified description of the Metropolis 
algorithm:


1. Start from an initial parameter value, θ0

2. Propose to jump to a nearby position 
in parameter space, θ* 


3. Calculate the ratio, r, of the proposal 
posterior densities


4. If r > 1, accept the proposed jump. 
Otherwise accept with a probability r 

5. Go back to Step 2 and continue…

r =
p(θ* |x)
p(θt |x)



MCMC Algorithms

• Each sequence, called a chain, meanders through 
parameter space. 


• It can be shown that these algorithms eventually converge 
to a stationary distribution that matches the posterior


• Some processing of the chain is required and there are 
diagnostics to assess convergence



Detecting Convergence

Trace Plot of a chain
Two issues


• it takes a while to get to the 
high probability area of 
parameter space: burn-in - 
discard some of the initial 
generations


• Parameter values are serially 
correlated in the chain: 
thinning - sample every 1000 
samples

generation



Detecting Convergence

• example of good convergence  
(“fuzzy caterpillar”)




Detecting Convergence

• good to run more than one chain to 
assess mixing — how well chains are 
exploring all of the space


• diagnostics


• Effective sample size - reflects serial 
autocorrelation


• Potential scale reduction factor (R)
(Gelman & Rubin 1992) - reflects 
variation between and within chains



Summarizing MCMC Posteriors

• With convergence, can easily compute natural summaries 
of the MCMC samples


• point estimates: mean or median


• credible intervals (also called Highest Posterior Density 
[HPD] intervals): from the quantiles, i.e., middle 95% of 
parameter values from the chain(s)



Bayes Factors

• Bayes Factors are sometimes used to compare support 
for two models. It is the ratio of the marginal likelihoods 
of each model: 


• Similar to AIC scores, these measure support on a 
continuous scale, but there are rules of thumb for 
interpretation

BF =
p(x |H2)
p(x |H1)



Features of Bayesian Approaches

• Bayesian approaches are asymptotically consistent: they 
converge to truth with increasing n


• Bayesian approaches are particularly strong with complex 
models with many parameters


• They can naturally handle many sorts of uncertainty that 
are ignored in other analyses. 


• If one goes along with subjective probability, Bayesian 
interpretations are more straightforward, e.g., credible 
intervals versus confidence intervals

p(θ |x) =
p(θ)p(x |θ)

p(x)



How To Do Bayesian Analysis

• MCMC methods often have to be tailored to specific problems 
to get good performance of the MCMC


• Specialized-purpose programs, such as BEAST, MrBayes, and 
PyRate, are therefore common


• General purpose Bayesian tools, where users can specify 
models broadly, often use R as a interface and glue (manage 
data, make plots, etc.) but use a more specialized language for 
the MCMC (BUGS, JAGS, Stan, etc.)


• There are some pure R implementations; we’ll use one, the 
MCMCpack library, for the exercises



Exercise 1. Bayesian Analysis using MCMCpack 

1. Install MCMCpack and load it as library(MCMCpack). This package 
supports several kinds of models, but we will focus only on regression models 
as fit by MCMCregress().  It relies on the coda package for functions 
analyzing the Markov chain. For data, we’ll return to the cope dataset we 
analyzed using regression on the first day, so go ahead and import those data 
again. 

2. We’ll start with the simple bivariate model valve.length ~ mg.temp. Start 
with a simple analysis, using mostly the defaults:  m1a <- 
MCMCregress(valve.length ~ mg.temp, data = cope).  This object 
(m1a) contains the set of parameter values from when the Markov chain 
meanders through parameter space. To see what this looks like, view the 
beginning of this object with head(m1a). Next look at trace plots with 
plot(m1a) - you may need to resize your plot window to get a good look. Are 
these trace plots consistent with convergence?  

3. Make another chain for this very same model; call it m1b and then combine it 
with the first chain as  m1ab<- mcmc.list(m1a, m1b). Plot this combined 
pair of chains and check if the chains look well-mixed. 

4. To keep things simple, go back to the first chain and do summary(m1a). Focus 
for now on the information at the top - can you tell how many MCMC samples 
are in the chain, and how much burn-in was used?    Now, use the 
effectiveSize function from coda to assess autocorrelation. Strong 
autocorrelation can make the effective sample size much lower than the number 
of MCMC samples. Does autocorrelation seem to be a problem here?



Exercise 1. Bayesian Analysis using MCMCpack 

5. Finally, let’s look at the information about the coefficients from summary(m1a). 
From this output, identify point estimates for the parameters and their 95% 
credible intervals.  Go back and do the same regression using lm() and then 
use confint() to compute 95% confidence intervals. Compare these to their 
counterparts you just got via MCMCregress. 

6. We want to use Bayes Factors to compare the support for the two-predictor 
model, valve.length ~ mg.temp + depth, to that of the one-predictor model 
we have been using. However, we need to specify different priors because the 
default priors are improper (they are not a true probability density function 
because they do not integrate to 1). I’ve worked out some reasonable weakly 
informative priors by examining plots of the priors. The details are too involved 
to warrant getting into, but they are listed in the answers to this exercise. Check 
them out and run the code you see there. Then, do summary(BF) to see what 
interpretation these Bayes Factors lead to.  Are interpretations based on 
classical statistics, AIC, and Bayesian approaches all consistent?



Approach Benefits Drawbacks

Frequentist
familiar, easy


little specialized skill required

less model dependence?

can only reject, can't support hypothesis

over-focus on p-values


alpha threshold problem

Likelihood + AIC
likelihood = evidence


can compare models on equal footing

focus on parameters

model dependence

can fall into threshold trap


AIC sometimes overfits

Bayesian

likelihood = evidence

can compare models on equal footing


good with complex models

good with uncertainty

focus on parameters


straightforward interpretation

analyses often takes longer

hard for non-specialists to understand


model dependent

complex


sometimes no basis for priors

some dislike subjective probability

( generated from group discussion )
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Discuss P-hacking papers

Head et al. (2015) The extent and consequences of P-hacking in science. PLoS Biol 13(3).

Baker (2015). Over half of psychology studies fail reproducibility test. Nature (News).



xkcd.com



Causes of P-hacking

Statistical hypothesis tests assume that everything about the test 
is determined ahead of time


• 1 vs. 2 tails, α


• which variables to analyze, what transformations, if any, to use


• what groupings to apply, subgroups to test


• when to stop collecting data


• which cases to include (no post-test dropping outliers)


If you have lots of separate tests, should apply a correction for 
multiple comparisons (Bonferroni) - remember, with  α = 0.05, 
expect a false positive every 20 tests.


Theory is your friend! Focus on few variables that have sound 
scientific reasons for considering; these also probably more likely 
to have real effects




Exploratory Analyses are Fine!

It is totally fine to do all those things on the previous 
slide as part of exploratory analysis — as long as it 
is reported openly.


This is important for hypothesis generation, but one 
should then collect new data to test these 
hypotheses in a confirmatory analysis




Exercise 2. P-hacking 

1. Let’s make some fake data with n = 100. Use rnorm() to generate a y variable 
and at least three x variables. Then, make two or more grouping variables by 
sampling with replacement a vector of labels, such as g1 <- sample(c(“A”, 
“B”), 100, replace = T) and g2 <- sample(c(“D”, “E”, “F”, 
“G”), 100, replace = T). Combine these all into a data frame. 

2. Your P-hacking goal: find significant relationships between y and any of the x or 
grouping variables. You can just start doing random tests, but it is probably 
helpful to make some plots first. Go ahead and make plots of y versus each x, 
with colors and plotting symbols varying according to grouping variables.  This 
should help you find subsets of the data that are particularly “interesting.” 

3. Another strategy is to start with a full regression model, lm (y ~ x1 + x2 
+x3 + g1 + g2), and then probe the variables that have the most significant 
coefficients. 

4. Allow yourself to do any of the P-hacking approaches we talked about, including 
doing lots of tests, omitting “outliers”, and especially, excluding, combining or 
splitting data according to groups.  

5. In some ways, P-hacking these data will be harder than real data because these 
simulated data are so homogenous. Real datasets will have more heterogeneity 
from unmeasured variables. In the answers, I implemented a simple way to add 
heterogeneity to the y variable that mimics the data being drawn from two 
subgroups, such as clades. You can check out my P-hacking results there, and 
you can replicate them because I used set.seed() to make the random parts 
repeatable.



Apply What You’ve Learned

Your Challenge: take any aspect of what we’ve 
covered and apply it to a question, problem, or 
dataset of interest to you.


Possibilities:

• Do a resampling-based test in place of a standard 

parametric test that you have done


• Do simulations to assess power of some test of interest to 
you. For example, you could explore the sample sizes you 
will need to have reasonable power in your own work


• Explore MCMCpack, for example, by playing around with 
different priors, or just applying it to do regression on a 
dataset of your own.


• Others…



Exercise answers follow



Exercise Answers 

## MCMCpack exercises (Ex. 1)
 
 ## Ex. 1
 library(MCMCpack)
 cope <- read.table(file = "cope.txt", header = T)
 
 # Ex. 2
 # simple regression
 m1a <- MCMCregress(valve.length ~ mg.temp, data = cope)
 head(m1a)
 plot(m1a) # yes, consistent with convergence
 
 
 # Ex. 3
 m1b<- MCMCregress(valve.length ~ mg.temp, data = cope)
 m1ab<- mcmc.list(mod1, mod1b)
 plot(m1ab)
 
 # Ex. 4
 summary(m1a) # 10,000 samples, 1,000 discarded as burn-in
 effectiveSize(m1a) # all near 10,000 so basically no autocorrelation
 
 # Ex. 5
 summary(m1a)
 w1 <- lm(valve.length ~ mg.temp, data = cope)
 summary(w1)
 confint(w1)  # point estimates and CIs are nearly identical
 
 # Ex. 6
   b0 <- c(700, 0)
   B0 <- matrix(c(1e-6, 0, 0, 1e-4), 2,2)
   c0 <- 2
   d0 <- var(cope$valve.length)
   mbf1 <- MCMCregress(valve.length ~ mg.temp, data = cope, b0 = b0, 
   B0 = B0, c0 = c0, d0 = d0, marginal.likelihood = "Chib95")
   
   b0 <- c(700, 0, 0)
   B0 <- matrix(c(1e-6, 0, 0, 0, 1e-4, 0, 0, 0, 1e-4), 3,3)
   c0 <- 2
   d0 <- var(cope$valve.length)
   mbf2 <- MCMCregress(valve.length ~ mg.temp + depth, data = cope, b0 = b0, 
   B0 = B0, c0 = c0, d0 = d0, marginal.likelihood = "Chib95")
   BF <- BayesFactor(mbf1, mbf2)

  



Exercise Answers 

## P-hacking exercises (Ex. 2)

 # 1 generate data set n = 100, rnorm() with several grouping variables, Use set.seed 
 # to make repeatable
  set.seed(1)
  N1 <- 30   # say, y data come from two clades -- adds heterogeneity to data (but no relationship to x vars)
  N2 <- 70
  NN <- 100
  y <- c(rnorm(N1, 50, 1), rnorm(N2, 52, 1))
  x1 <- rnorm(NN, 25, 1)
  x2 <- rnorm(NN, 100, 1)
  x3 <- rnorm(NN, 100, 1)
  g1 <- sample(c("A", "B"), size = NN, replace = T)
  g2 <- sample(c("D", "E", "F"), size = NN, replace = T)
  X <- data.frame(y, x1, x2, x3, f1 = factor(g1), f2 = factor(g2))
 
 # 2 P-hack away -- find significant relationships!
 # first look visually
 fn1 <- as.numeric(X$f1)  # useful for plotting colors by group
 fn2 <- as.numeric(X$f2)
 
 plot(y ~ x1, data = X, pch = g1, col=fn1)  # looks like group B has relation
 w <- lm(y ~ x1, data = X, subset = f1 == "B")  ## P = 0.00079
 plot(y ~ x1, data = X, pch = g2, col = fn2)
 plot(y ~ x2, data = X, pch = g1, col = fn1)
 plot(y ~ x2, data = X, pch = g2, col = fn2)
 plot(y ~ x3, data = X, pch = g1, col = fn1)
 plot(y ~ x3, data = X, pch = g2, col = fn2)

 # another approach, start with full model, explore variables with low P
 wfull <- lm(y ~ x1 + x2 + x3 + f1 + f2, data = X)  # x1 and x3 have P < 0.05
 w <- lm(y ~ x1)  # P = 0.02
 w <- lm(y ~ x3)  # P = 0.04 - can we get this even lower?
 plot(y ~ x3, data = X, pch = g1, col=fn1)  # maybe stronger in group A?
 w <- lm(y ~ x3, data = X, subset = f1=="B")  # hmm, no, P = 0.07
 
 # Well, maybe x2 is not important on its own, but it is relative to x1 (x2/x1)
 X$x2.x1 <- X$x2 / X$x1  # x2/x1
 w <- lm(y ~ x2.x1, data = X)  # just what I thought - P = 0.01
 plot(y ~ x2.x1, data = X, pch = g1, col = fn1) # you know, pattern looks even stronger in grp B
 w <- lm(y ~ x2.x1, data = X, subset = f1 == "B")  # P = 0.00029; wow, this must be a robust finding

  


