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Probability

• Probability is related to the 
chances that an event occurs


• Sample space: set of all 
possible outcomes


• Different outcomes can have 
different associated 
probabilities, specified by a 
model = probability density


• Some sample spaces are 
discrete, others continuous
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Operations on Probabilities

• Probabilities range from 0 to 1


• Probabilities of all possible 
outcomes sum to 1


• If all outcomes equally 
probable, can get probabilities 
by counting outcomes
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Probability Examples
If events are independent:


Pr(A and B) = Pr(A) Pr(B)


If events are disjoint:


Pr(A or B) = Pr(A) + Pr(B

Two coin tosses: probability of repeated 
flip?


Outcomes: HH, HT, TH, TT


Pr(HH or TT) = Pr(HH) + Pr(TT)


                    = 1/4 + 1/4


                    = 1/2


Two tosses or dice: probability of getting 
two sixes?


Pr(6 and 6) = Pr(6) x Pr(6)


               = 1/6 x 1/6


               = 1/36




Probability Distributions in R

• Functions available for common probability 
distributions such as normal, t, uniform, 
binomial, etc. 


• Example: normal distribution (norm)


• dnorm()  density function


• pnorm()  cumulative distribution  Pr (X < x)


• qnorm()  quantile function (values from prob’s)


• rnorm()  generate random variates
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Probability Distributions in R

Examples 

density of gamma:  dgamma()

quantiles of normal: qnorm()

random uniform variable: runif()



Probabilities from Distribution Functions
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• Common task: get probability of 
observing value as extreme or more 
so than one observed (P-value)


• Area near tails of density function


• Calculation done from distribution 
function - cumulative area of 
density function

dnorm (x, mean, sd)

pnorm (x, mean, sd)

Left tail:   Pr( x < -1.06 )  pnorm(-1.06) 

Right tail: Pr( x > 1.06 )   pnorm(1.06, lower.tail=F)

Example: value of -1.06 from Normal (0,1)



Exercise 1. Probabilities and probability distributions 
1. When tossing two fair dice, what is the probability of observing exactly 

one six? 
2. Generate a vector of 50 variates uniformly distributed between 10 and 20. 
3. Suppose a set of femora lengths are drawn from a normal distribution 

with a mean of 10 and standard deviation of 1. Use the cumulative 
distribution function of the normal distribution to compute the probability 
of observing a value of less than 12.  How about greater than 12? What 
should these sum to? 

4. Same distribution as question #2.  How can you get R to tell you what the 
femoral lengths define the 25th and 75th percentiles of this distribution?



Populations and Samples

• A population is the complete set of objects 
or events of interest for some question


• A sample is a subset of objects chosen to 
represent a population

Examples 

To a pollster, the population may be the full set of U.S. 
voters, but the sample may be a set of 1,000 respondents.


For a paleontologist, the population may be all individuals 
that ever existed of Phacops rana, with the sample being 25 
specimens collected from an outcrop in New York.

Ideally, samples are representative of populations with respect 
to the attributes under study



Populations and Samples

Samples, because they are finite subsets, will not 
match the population exactly. These differences 
are ascribed to sampling error.

Population 
(Model)

Sample 
(Data)

Probability theory

Statistics
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Classical Hypothesis Testing

• From the work of Pearson, Neyman, and Fisher 
early 20th century


• Dominates undergraduate statistics teaching


• Based on frequentist probability

Karl Pearson 
wikipedia

R. A. Fisher 
wikipedia



Classical Hypothesis Tests

Steps


• Specify the null and alternative hypotheses


• Determine a test statistic that reflects the 
hypotheses; compute it for observed data


• Using known distribution of test statistic, 
compute the P-value of the test statistic: 
probability of observing that result, or one 
more extreme, if the null hypothesis is true


• Compare the P-value to the significance 
level, α. If P < α, reject the null. If P > α, do 
not reject the null.



Example: do two populations differ in means?

• Null and alternative 
hypotheses


• Test statistic


• P-value from 
distribution of test 
statistic 


• Compare to the 
significance level, α.

H0 : μ1 = μ2 Ha : μ1 ≠ μ2

t =
X1 − X2

sp
1
n1

+ 1
n2

Pval= 2 * pt(t, df = n1 + n2 - 2, lower = F)
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t = 1.06
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not significant,  P = 0.308

t.test(x1, x2)



Example: even sex ratio?

• Null and alternative 
hypotheses


• Test statistic


• P-value from 
distribution of test 
statistic 


• Compare to the 
significance level, α.

H0 : p = 0.5 Ha : p ≠ 0.5

Pval = 2 * pbinom(x = 20,  size = 50)

not significant,  P = 0.203 

Data: 20 male, 30 female

x = number of males (20)

binom.test(x = 20, n = 50)
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1- vs 2-tailed tests

•Thus far, tests have been two-
tailed; Ha includes both tails of the 
distribution of the test statistic 


•Some tests are one-tailed because 
interest is only in departures in one 
direction (e.g., Chi-square)


•Tests should usually be two-tailed. 


•Ask: would I also be interested in a 
significant finding in the other 
direction?
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Ha : μ1 > μ2

Ha : μ1 ≠ μ2



Types of Error

H0 is true H0 is false

Fail to Reject H0 OK Type II error

False negative

Reject H0
Type I error


False positive OK

Reality

Test Result

Pr (Type I) = α

Pr (Type II) = β Power = 1 - β 

There is a tradeoff between 
Type I and Type II error 



Exercise 2. Null hypothesis testing 
1. Simulate two samples drawn from a normal distribution with equal means 

and standard deviations. Perform a t-test using the R function t.test(). 
What is the p-value? What  did you expect? 

2. One iteration is not enough to get a sense of the behavior of this test. 
Write a script that replicates the previous exercise 1,000 times, recording 
the p-value of each replication into a vector. What does this distribution 
look like? What proportion of tests show a significant p-value assuming α 
= 0.05? 

3. Now, investigate Type II error by simulation, again for the t-test. Recall 
that Type II means that H0 is false but not rejected, therefore we need to 
specify how H0 is false. Let’s say that sample 1 was drawn from a 
population with a mean of 10 and sd of 1, whereas sample 2 the mean is 
11 while sd is still 1. Assume a sample size of n = 20 for each sample. 
Run simulations to estimate the probability of Type II error in this 
situation. 

4. Repeat question 3, but now for n = 10 per sample. How much does the 
probability of Type II error change?  How about when n = 50 per sample?



Some Issues with P-values

• For large enough datasets, nearly all tests are 
significant. Statistical significance is not the same as 
scientific importance.


• Threshold problems: P = 0.049 and P = 0.051 get 
different interpretations, but P = 0.051 and P = 0.99 
are interpreted the same.


• They can be used to reject hypotheses but not 
support them. 


• They often receive too much focus, at the expense 
of other important issues (e.g., parameter estimates 
and confidence intervals).



ASA’s Statement on P-values (2016)

1. P-values can indicate how incompatible the data are 
with a specified statistical model. 


2. P-values do not measure the probability that the studied 
hypothesis is true, or the probability that the data were 
produced by random chance alone.


3. Scientific conclusions and business or policy decisions 
should not be based only on whether a P-value passes a 
specific threshold. 


4. Proper inference requires full reporting and transparency 


5. A P-value, or statistical significance, does not measure 
the size of an effect or the importance of a result. 


6. By itself, a p-value does not provide a good measure of 
evidence regarding a model or hypothesis. 



Point Estimation

• A parameter is a quantity describing an 
aspect of a population, estimable only 
indirectly from samples. 


• A point estimate is a number that can be 
regarded as the most plausible value of a 
parameter


• Example: the sample mean is a point estimate 
of the population mean (  )̂μ

x̄ =
∑ xi

n



Point Estimation
Estimators should be unbiased (accurate) and 
have low variance (precise)

High accuracy 
High precision

Low accuracy 
High precision

High accuracy 
Low precision

Low accuracy 
Low precision



How Precise?

• Sampling error causes an estimate 
to differ from its true value, 
according its sampling distribution


• Measuring these deviations:

• their standard deviation is called 

the standard error 
• the distribution can be used to 
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0.
0

0.
1

0.
2

0.
3

0.
4

x

P
ro

ba
bi

lit
y 

de
ns

ity

(1 - α) confidence intervals include all values for which a null 
hypothesis test is non-significant at a threshold of α

Confidence limits and hypothesis tests are related



Determining the Sampling Distribution

• How determine sampling distribution of a test statistic?


• Can be derived mathematically after making 
assumptions about population/data, such as:

• normally distributed

• equal variance

• independent


• Non-parametric tests often relax assumptions about 
specific distributions, often with lower statistical power


• Several computationally intensive alternatives exist for 
generating a null / confidence interval: bootstrapping, 
permutation tests, parametric bootstrapping



Exercise 3. Point estimation 
1. Is the estimator of the sample mean unbiased? Write a script that uses 

simulation to generate many samples from a normal distribution in order 
to test this claim.  

2. The standard error of estimates of a sample mean is known analytically 
to be s / sqrt(n), where s is the standard deviation of the sample and n is 
the number of observations.  Check the results from your script above to 
see if they are consistent with this claim.  

3. Simulate x from a standard normal with n = 2000. Now set y <- x + 
rnorm(2000, 0, 10).  Make a scatterplot of x and y and note the 
pattern. Now, do a linear regression of y ~ x and check the p-value. Are 
you surprised? 



Resampling Approaches

Useful when


• assumptions of parametric approaches are violated 
(non-normal, etc.)


•  test statistic does not have known distribution


Unlike non-parametric approaches, resampling approaches 
often have statistical power comparable to standard 
parametric tests


Costs: computational time/effort, less accurate when 
assumptions strictly met



Approaches to Resampling

method nature of resampling

R code 
x = data vector

n = sample size


grp = grouping variable

Bootstrapping
sample, with 

replacement, n times 
from data

 sample(x, size = n, replace = TRUE)

Permutation shuffling, usually of 
group labels  sample(grp)  # default is permutation

Parametric 
Bootstrapping 
(Monte Carlo 
simulation)

generating from a 
parametric null

 ## for example  
 x <- rnorm(50, mean = 22.1, sd = 1.2)

see Kowalewski & Novack-Gottshall (2010) PS Short Course.



General Steps

1. Identify the hypothesis


2. Choose the test statistic, T 

3. Calculate the observed test 
statistic, Tobs


4. Produce a resampling distribution


5. Compute P-value or CI based on 
resampling distribution

H0 : μ1 = μ2

X̄1 − X̄2 tor

example

tobs = 1.2

Resampled T
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Why Does this Work?

• Bootstrapping uses the data itself as a 
proxy for the population distribution


• Parametric bootstrapping, like null 
hypothesis testing, assumes a 
parametric form for the population. It 
just generates the sampling distribution 
of T through simulation rather than 
analytically.
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Simple Bootstrap Example

Confidence interval on sample mean:

x <- c(9, 10, 10, 11, 11, 12)

 (1)  Generate 1000 bootstrap 
samples of x xb <- sample(x, replace = TRUE)

mb[i] <- mean(xb)

ci <- quantile(mb, prob = c(0.025, 0.975)) 
# these are simple CI's; there are variants 
# of bootrap CI's that are better

Bootstrap means
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(2) Compute sample mean for 
each

(3) CI from quantiles of 
resampled means



Paleo Bootstrap Example

• Foote (1993) looked at 
morphological disparity in 
trilobites and blastoids over 
time.


• Disparity has unknown 
sampling distribution, so CIs 
were based on bootstrap 
resampling



Paleo Bootstrap Example

• Foote (1993) looked at 
morphological disparity in 
trilobites and blastoids over 
time.


• Disparity has unknown 
sampling distribution, so CIs 
were based on bootstrap 
resampling



Paleo Parametric Bootstrap Example

• Hunt & Chapman (2001) looked 
at evidence for instar clustering 
in trilobites using mixture 
models. 


• Parametric bootstrapping was 
used to test sequentially the 
number of instar clusters.  


• The test statistic (likelihood 
ratio) does not follow its 
expected distribution for 
mixture models.
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FIGURE 2. Dot plot of cephalic length for the Piochaspis sellata data. Each dot represents one specimen; specimens
are binned over a small interval (0.065 mm). Arrows point to the smallest and largest specimens, which were ex-
cluded from the mixture analysis. Roman numerals I–III indicate putative clusters referenced in text.

the only ones sampled from their respective
groups. If so, this poses a difficulty, because it
is impossible to estimate variance on the basis
of a single specimen. Therefore, we have ex-
cluded these two points from analyses and
limited ourselves to possible groupings
among the remaining 36 individuals. (An al-
ternative approach, which allows groups to be
represented by a single specimen by con-
straining the variance of the groups to be
equal, yields results equivalent to those pre-
sented.)

The first step in the analysis is to consider
the following question: Is the size distribution
clustered to the extent that hypotheses of in-
star groupings seem necessary to explain the
data? In terms of mixture models, this ques-
tion becomes, Is it significantly more likely
that the observed data were drawn from a
mixture of normal distributions than from a
single normal distribution?

To answer this question, we employed the
parametric bootstrapping procedure de-
scribed above, starting with H1 as a single,
normal distribution, and H2 as a mixture of
two normal distributions. The best-supported
two-group model has cluster I as a group and
combines clusters II and III into the second
group. We emphasize that the analysis is in no
way constrained to yield groupings that cor-

respond to those suggested by visual inspec-
tion (Fig. 2). As it turns out, these putative
clusters provide a convenient means to de-
scribe the solutions for each model.

The gain in support for H2 over H1 as mea-
sured by 22l is 13.46 (Table 1). To determine
if this is a larger increase in support than
would be expected if H1 were true, we com-
pare this to the bootstrap distribution of 22l.
The observed 22l is exceeded by 6.1% of the
bootstrap replicates, and the two-group mod-
el therefore narrowly misses rejecting the one-
group model at the a 5 0.05 level (Table 1).

Next, we test if the three-group model de-
scribes the data better than the one-group
model. The best-supported three-group solu-
tion happens to correspond to the three clus-
ters suggested by visual inspection (Table 2,
Fig. 2). The observed likelihood ratio is greater
than all but 2.9% of the bootstrap replicates,
rejecting the one-group model in favor of the
three-group model at the a 5 0.05 significance
level.

Finally, we consider whether the observed
size distribution is significantly better de-
scribed if the data are considered to occur in
four groups rather than three. Of the three
groups to split, the largest gain in support is
effected by splitting the second cluster into
two groups (22l 5 10.23). Now, H1 consists

473TESTING INSTAR HYPOTHESES

TABLE 1. Results of the maximum likelihood analysis for the one- through four-group models for the Piochaspis
sellata data. The arbitrary additive constant was chosen so that the support for the simplest model (one-group) is
zero. The last four columns are the statistics for the specific bootstrap tests. The ‘‘Bootstrap results’’ column shows
the number of bootstrap replicates that exceeded the observed value for the log-likelihood ratio (22l), out of the
total number of replicates performed. The power of each bootstrap test was estimated using the procedure described
in the text with 1000 replicates. An asterisk indicates that the model with fewer groups (H1) is rejected in favor of
the model with more groups (H2) at the a 5 0.05 level.

No. of
groups Support

Bootstrap test
(H1 vs. H2)

Observed
22l Bootstrap results

Bootstrap
p-value Power

1
2
3
4

0
6.73

13.94
19.06

—
1 vs. 2 groups
1 vs. 3 groups
3 vs. 4 groups

—
13.46
27.89
10.23

—
183/3000

57/2000
504/1000

—
0.061
0.029*
0.504

—
0.59
0.87
0.10

TABLE 2. Cephalic lengths and growth ratios for the three-group solution for Piochaspis sellata. Cluster labels refer
to those in Figure 2. n is the number of specimens assigned to each cluster; the outliers were assigned a priori, but
the remaining 36 specimens were assigned to the cluster for which they have the highest probability of membership
according to the analysis. See text for details on the calculation of standard errors.

Cluster n
Mean cephalon length

(SE)
CV cephalon

length
Growth ratio

(95% CI)

Small Outlier
I
II
III
Large Outlier

1
13
14

9
1

2.21
2.86 (0.051)
3.87 (0.048)
4.94 (0.090)
6.37

—
6.1
4.4
5.4
—

—
1.30
1.35 (1.26, 1.45)
1.28 (1.19, 1.37)
1.29

of the parameter estimates implied by the
three-group distribution, and H2 are the esti-
mates implied by four groups. The observed
value of 22l is greater than only 49.6% of the
bootstrap values, and thus we have no reason
to reject H1 (three groups) in favor of H2 (four
groups).

Because there are relatively few specimens
in this data set, the bootstrap tests have low to
moderate statistical power (Table 2). The test
of the three-group model versus the four-
group model is particularly weak (0.10) im-
plying that, even if the best-supported four-
group model were true, data such as these
would be able to reject the three-group model
only about 10% of the time. Accordingly, we
are confident that the three-group hypothesis
is better than the one-group hypothesis, but
we are more cautious about deciding between
three and four groups.

Example: Ampyxina bellatula

Our second example is based on cephalic
measurements from 97 specimens of the ra-
phiophorid trilobite Ampyxina bellatula Savage
from the Upper Ordovician of Missouri. On

the basis of taphonomic evidence, Brezinski
(1986) interpreted this occurrence as a cata-
strophically buried death assemblage. Because
evolution in growth patterns tends to blur in-
star groupings, census events such as this one
offer the opportunity to examine instar pat-
terns free from the noise introduced by time-
averaging. The measurements from these
specimens do appear to be clustered (Fig. 3),
and Brezinski (1986) interpreted these clusters
to be instars. Brezinski’s subsequent conclu-
sions about the life-history and ecology of this
species depend on his initial judgment of in-
star clustering. There are perhaps eight puta-
tive clusters that may be discerned by eye in
this plot, and for ease of reference, they are la-
beled I–VIII on Figure 3.

Sheldon (1988) questioned Brezinski’s inter-
pretation of instar groupings in these speci-
mens, suggesting that peaks on the histogram
of cephalic lengths could be caused by sam-
pling and rounding error. This difference in
interpretation seems to stem, at least in part,
from which plot one looks at to discern clus-
ters. The bivariate scatter plot seems to show
discrete groupings, while the histogram

fossilmail.com



Exercise 4. Resampling approaches 

1. One drawback of RMA is that it is not straightforward to compute confidence 
limits and standard errors for the slope.  For this exercise, we’ll make a new 
function, RMAboot(), to compute bootstrap standard errors on the RMA slope. 
You’ll need to loop through a large number of replicates, and for each rep, take 
a bootstrap sample, compute the RMA slope for this bootstrap sample, and 
store it in an array. One of the tricky parts here is that the observations are 
paired, so you need to sample the indices; if there are N points, sample(1:N, 
replace=TRUE) will create a bootstrap sample of the indices. 

2. Return to the cope data. We are going to test if populations from the species P. 
pintoi and P. species4 have different mean sizes. Extract the valve lengths from 
these two species into separate vectors, pin and sp4. Perform a t.test on 
these vectors.   

3. The function t.test also allows one to specify the test with a formula, which 
will be more convenient for a permutation test. This formula is specified as y ~ 
group vector, where y is a vector that includes lengths from both species and 
group specifies which species they are from.  Implement the same t-test as in 
#2 but use the formula interface. 

4. A good way to visualize the distribution of small datasets of one variable is 
through stripchart(). Check out its help and figure out how to use formula 
notation to show the two species separately.  

5. Now, write a script to perform a permutation test for these same data. Use the t 
statistic returned by t.test as your test statistic. With each iteration of the 
loop, you’ll need to permute the group vector using the sample function.
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Likelihood

• Basis for statistical inference, developed by R. A. 
Fisher


• Likelihood (L) of model parameters (θ) given data (x), 
is the probability of the data, given the model: 


• Parameter values that yield the highest probabilities 
of producing observed data are favored


• Likelihood also provides a basis for evaluating the 
support different models receive

L(θ |x) = Pr(x |θ)



Probability vs. Likelihood

Pr(x |θ) L(θ |x)
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Log-likelihood

• It is usually more convenient to work with log-
likelihoods, logL = log(L)


• With multiple, independent observations, the total 
likelihood is their product and the total log-likelihood 
is their sum

L(θ |x1, x2) = L(θ |x1) ⋅ L(θ |x2)

logL(θ |x1, x2) = logL(θ |x1) + logL(θ |x2)



Example: coin tosses

• Flip a coin 10 times. Data (x) are 7 heads 3 tails

H1:  fair coin, Pr[H] = p = 0.5

H2:  possibly unfair coin; p can vary


• Free parameters

H1:  none

H2:  p



Probability of the Data

• Binomial distribution: probability of x successes in n 
trials, given probability of success p:


• Likelihood for H1: fill in x (7 Heads), n (10 trials), and 
p (0.5), compute result.


L(H1 |x) = 0.117

logL(H1 |x) = − 2.14

dbinom(x = 7, size = 10, prob = 0.5)

dbinom(x = 7, size = 10, prob = 0.5, log = T)

Pr(x |p) =
n!

x!(n − x)!
px(1 − p)n−x



Likelihood of H2

For H2, p is freely variable, and unknown.  We want to 
choose a value for p such that it maximizes L(H2), which 
is same as maximizing logL(H2). 

L(p = 0.1) dbinom(x = 7, size = 10, prob = 0.1) 0.000

L(p = 0.2) dbinom(x = 7, size = 10, prob = 0.2) 0.001

L(p = 0.3) dbinom(x = 7, size = 10, prob = 0.3) 0.009

L(p = 0.4) dbinom(x = 7, size = 10, prob = 0.4) 0.042

L(p = 0.5) dbinom(x = 7, size = 10, prob = 0.5) 0.117

L(p = 0.6) dbinom(x = 7, size = 10, prob = 0.6) 0.215

L(p = 0.7) dbinom(x = 7, size = 10, prob = 0.7) 0.267

L(p = 0.8) dbinom(x = 7, size = 10, prob = 0.8) 0.201

L(p = 0.9) dbinom(x = 7, size = 10, prob = 0.9) 0.057



Likelihood of H2

The value of p that produces the highest likelihood is 
called the maximum likelihood estimate (MLE).

For logL, get derivative and 
set equal to zero, solve for p.Li

ke
lih

oo
d
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Asymptotic Properties of MLEs

• unbiased:  the expected value is equal to the true 
parameter


• efficient:  has the smallest variance among 
unbiased estimators


• normal:  the sampling distribution is Gaussian


• consistent:  becomes arbitrarily close to the true 
parameter

n → ∞



Likelihood of H2

• For H2, the best estimate for p is 0.7.  Substituting 
into the probability function gives L(H2) and logL(H2):


• Likelihood for H2: fill in x (7 Heads), n (10 trials), and 
MLE of p (0.7), compute result.


dbinom(x = 7, size = 10, prob = 0.7)

dbinom(x = 7, size = 10, prob = 0.7, log = T)

L(H2 |x) = 0.266

logL(H2 |x) = − 1.32

L(H2) =
n!

x!(n − x)!
̂px(1 − ̂p)n−x



Choosing Among Models: LRTs

• L(H2) is higher than L(H1).  How do we interpret this?


• Generally log-likelihoods increase with model complexity


• One can use a likelihood ratio test (LRT) to see if more complex 
model is significantly better than simpler one. The likelihood ratio 
is:


• Some models are nested — simpler one is special case of the 
more complex one. For nested models, -2 times the the log of the 
likelihood ratio is approximately distributed as a Chi-square, with 
df as the difference in the number of free parameters in H1 and H2. 


Λ =
L(H1)
L(H2)

−2 log Λ ∼ χ2 −2 log
L(H1)
L(H2)

−2 (logL(H1) − logL(H2))



LRT for coin flip
For our coin toss, L(H1) = 0.117  and L(H2) = 0.266


−2 log Λ = − 2 log
0.117
0.266

= 1.64

pchisq(q = 1.64, df = 1, lower=FALSE)   # P = 0.20

0 1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

-2 log[LR]

P
ro

ba
bi

lit
y 

de
ns

ity



Information Criteria: AIC

• Can use Akaike Information Criterion to balance goodness-of-
fit (logL) and model complexity (K = number of free parameters)


• Corrected version, for when sample sizes are not overly large (n/
K < 40)


• AIC measures amount of information lost when approximating 
reality with a model; lower AIC scores are better


AIC = �2logL + 2K

AICC = AIC + (2K[K + 1])/(n�K � 1)



Information Criteria: BIC

• Another criterion is the Bayesian Information 
Criterion, which tends to penalize model complexity 
more strongly than AIC:


• BIC can be considered a simple approximation to 
Bayesian approaches


BIC = − 2 log L + K log(n)



Information Criteria: AIC

• AIC and AICc scores are often converted to ΔAIC 
scores by subtracting from each model the score of the 
best. 


• ΔAIC are sometimes converted to Akaike weights, 
which sum to 1 across models, indicating proportional 
support.

�i = AICi �min(AIC)

wi =
exp

�
� 1

2�i

⇥
⇤

j exp
�
� 1

2�j

⇥

ΔAIC interpretation

< 2 substantial support

4 considerably less support

> 10 essentially no support



Information Criteria: AIC

• AIC makes the most sense when all our models are much 
simpler than reality. If reality is simple enough to be included 
among our models, Bayesian approaches have better 
properties


• Because ΔAIC determines interpretations, it is the additive 
difference between AIC scores that matters


• AIC measures relative, not absolute fit. The best model may still 
be poorly supported. 

• If possible, include a null model in the comparisons

• Other approaches to model adequacy involve simulation 
under the null hypothesis and assessing if the observed 
data deviate from that



Summary: Coin Toss

model likelihood K AICc ΔAICc Akaike weight

H1: p = 0.5 0.117 0 4.29 0 0.61

H2: p free 0.266 1 5.14 0.85 0.39



Likelihood and Confidence Intervals
There is information in the shape of the likelihood function 
about precision of a MLE
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x = 7, n = 10 x = 140, n = 200

Two different approaches use information on how narrow the 
likelihood peaks are.




Wald Confidence Intervals

• The standard error of a MLE is related to the second 
derivative of the log-likelihood function near the peak


• Can work out analytically, or if not solvable, numerically


• For binomial: 


• Under assumption of normality, confidence intervals can 
be computed from the percentiles of the standard 
normal distribution

SE( ̂p) =
p(1 − p)

n
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Likelihood Ratio Confidence Intervals

• Likelihood ratio confidence intervals ( = profile likelihood 
CI's) can be thought of as applying a LRT to all 
parameter values and retaining those not significantly 
different from the MLE as delimiting the CI


• Upper 95% tail of the 𝜒2 (df = 1) is 3.84. Since twice the 
differences in log-likelihoods should be less than this, 
keep all parameter values with log-likelihoods within 
1.92 units of the max log-likelihood
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Likelihood Ratio Confidence Intervals

method 95% CI

Wald (0.42, 0.98)

LRT (0.40, 0.91)
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Application: Time-series of Traits

SPECIES AND SPECIATION 

CLARK'S FORK BASIN HYOPSODONTIDAE 
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FIGURE2. Gradual phyletic evolurion in the early Eocene condylarths Haplomylus (solid circles) and Hyopsodus (open 
cirdes), based on evidence from the Clark's Fork Basin in northwestern Wyoming. Abscissa is tooth size (and by inference 
body size), measured as crown length multiplied by width (both measured in mm). Ordinate is stratigraphic level above 
Cretaceous, measured in meters (see Gingerich et al. 1980; Rose 1981; Gingerich 1982). Sequence shown here represents 
about 3 ma of evolutionary time. Numerals within fields of open or dosed circles represent multiple specimens of same 
size in a given stratigraphic interval ( x  represents 10 or more specimens). Dashed lines endose approximately 95% of 
variation in each species, as discussed in caption for Fig. 1. Wasatchian trends duplicate those discussed in Gingerich (1974, 
1976) based entirely on new material collected in the past 10 yr. Sample size (N) for Haplomylus simpsoni is 14, H. 
speirianus is 385, H. scottianus is 106, Hyopsodus loomisi is 656, H. latidens is 205, and H. simplex is 8 .  Measurements 
based on teeth in dentaries. Inclusion of isolated teeth would increase sample size substantially. Note abrupt shift in size 
of Haplomylus and abrupt introduction of Hyopsodus at Clarkforkian-Wasatchian boundary. Gradual evolution of Haplomylus 
appears to continue across Biohorizon A of SchanMer (1980), just above 1,760-m level, while Hyopsodus shifts abruptly in 
size. Haplomylus apparently became extinct at Biohorizon B, while gradual trend toward smaller size in Hyopsodus continued 
across this boundary. All specimens plotted here are in University of Michigan collections. 

codexis metsiacus in the interval spanning 1600 
m (Fig. 1). The transition from Hyopsodus loom-
isi to H. latidens, coinciding with faunal turn-
over at Biohorizon A within the Wasatchian, 
also lacks intermediates. If the former species 
gave rise directly to the latter, this transition 
would require change at 1.2 d. Several transi-
tions within earlier H ,  loomisi involved rates of 
1.7, 1.8, and 1.9 d (e.g., interval spanning 1580 
m in Fig. 2). 

The distribution of evolutionary rates in lin-

eages of Haplomylus and Hyopsodus increasing 
and decreasing in size differs little from that in 
lineages of Diacodexis and Ectocion exhibiting 

stasis (Fig. 3). In some cases the appearances 
and disappearances of particular species are well 
marked. These coincide with brief intervals of 
faunal turnover at the Clarkforkian-Wasatchian 
boundary or at one of two biohorizons within 
the early-middle Wasatchian (SchanMer 1980, 
1981). In other cases, transitions between species 
(e.g., Haplomylas spein'anus and H. scottianas, 

Gingerich (1976)

How should these data be interpreted? 
Qualitatively at first, then with null models. 



General Random Walk
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Expected Change over Time
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General Random Walk (GRW)

• Same general model can  be used for two modes:


Mode Other names

Directional Evolution
General RW


Directional RW

Biased RW

μs ≠ 0

Random Walk Symmetric RW

Unbiased RW μs = 0



Summary So Far...

�z � N(tµs, t⇥
2
s)

�z � N(0, t�2
s)

Mode Distribution of AD 
differences (Δz)

Directional Evolution

Random Walk

We want to be able to fit these models -- determine 
best parameter values, and measure of model support

Likelihood  



Goals
• Use likelihood approaches to get best parameter 

estimates (μs, σs2), and to compare fit of directional 
change and random walk models.


• Likelihood calculations involve the probability density 
of the Normal distribution

�z � N(tµs, t⇥
2
s)

�z � N(0, t�2
s)

Mode Distribution of AD differences 
(Δz)

Directional Evolution

Random Walk

Pr(�z) =
1⇥
2�V

exp
�
� (�z �M)2

2V

⇥



Example Calculation

• Example, for General Random Walk: M = tμs,  V = tσs2 

Pr(�z) =
1⇥
2�V

exp
�
� (�z �M)2

2V

⇥

L(MRW ; �z) =
1⇤

2⇥t⇤2
s

exp
�
� (�z � tµs)2

2t⇤2
s

⇥

logL(MRW ; �z) =
1
2

log(2⇥t⇤2
s)� (�z � tµs)2

2t⇤2
s

• For multiple Δzi, simply sum logL over all Δzi



Example Calculation

Assume t = 10 steps, 
compare two sets of 
parameter estimates for 
Directional model:
μs = 0

σs2 =  0.01

μs = 0.25  

σs2 =  0.01

N (0, 0.1) N (2.5, 0.1)
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Log-likelihood Surface
593COMPARING EVOLUTIONARY MODELS

FIGURE 6. Analysis of tooth measurements in Cantius.
A, Evolutionary sequences of a size-related trait (M1

length) and a shape trait (M1 L/W ratio). Dots indicate
population means, with approximate 95% confidence
intervals. Sequences were standardized by within-sam-
ple variance and shifted so the first sampled point has
a mean of zero, as described in the text. Time scale is in

←

Myr counting forward from the first sample. B, C, Log-
likelihood surface for estimates of the parameters (!step

and "2
step) of the general random walk model. B, M1

length. C, M1 L/W. Cross (# ) indicates position of the
maximum-likelihood estimate, and thin contours indi-
cate the decrease in log-likelihood from this optimuum.
The thick contour outlines the 95% joint confidence re-
gion. Solutions corresponding to an unbiased random
walk are indicate by the gray dotted line at !step $ 0.

traits show little net change. Size increases are
substantial, amounting to approximately six
standard deviation units for M1 length (Fig.
6A).

The support for various parameter values
for the general random walk model can be vi-
sualized with a contour plot of the log-likeli-
hood surface (Fig. 6B,C). The x- and y-axes of
these plots correspond to estimates of !step

and "2
step, and the surface height indicates the

log-likelihood of each parameter combination.
Each of these plots has a single peak corre-
sponding to the maximum-likelihood esti-
mates of !step and "2

step (indicated by a ‘‘# ’’),
with contour lines showing unit decreases in
log-likelihood from the optimum. The thicker
contour in these plots outlines solutions with-
in 2.5 units of log-likelihood from the peak.
For two-parameter models, this contour en-
closes the joint 95% confidence region for the
parameters (see Kalinowski and Taper 2005).
For M1 length, this confidence region lies al-
most completely within the parameter space
of positive !step values, so nearly all solutions
within the 95% confidence interval imply adi-
rectional increase in this trait (Fig. 6B). The
best estimate for !step is 5.10 standard devia-
tion units per million years (SD/Myr); this is
the expected net increase in M1 length for ev-
ery million years of evolution (consistent with
Fig. 6A). In contrast to M1 length, the log-like-
lihood surface for the length to width ratio of
M1 peaks where !step is very close to zero
(% 0.10 SD/Myr; Fig. 6C), indicating essen-
tially nondirectional change. These differenc-
es in !step between size and shape variables are
consistent for all traits (Table 1). All of the size
traits show stronger directional change (!!step!
& 2) than all of the shape traits (!!step! ' 2),
supporting the interpretation that for this lin-
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data from: 
Clyde & Gingerich (1994) Use hill-climbing algorithm to 

find peak (= MLE)



Exercise 5. Likelihood 
1. Let’s look at an example time-series analysis using the functions in the 

paleoTS package. First, install the package if necessary and then load it 
with the library function. Next, read in Gingerich’s Cantius data with 
cantius <- read.paleoTS(“Cantius_lowerL.txt”). If this function is 
called without any argument, the user is prompted to navigate to the file 
location. First plot the data. Finally, fit some models to these data with the 
function fit3models(cantius). Take a look at the printed results. 
Which model is best, and which is the worst? How do you interpret the 
strength of evidence favoring the best model? Does this match the visual 
impression of the data? 

2. Return again to the two regressions you fit to the cope data yesterday 
(valve.length ~ mg.temp, valve.length ~ mg.temp + depth). Re-
run them from your script.  Add an additional model that just has an 
intercept (valve.length ~ 1). Use the AIC() function to get the AIC 
score for each model, and then compute ΔAIC values. How do you interpret 
these results in terms of the support of these models? 

3. Figure out how to determine the LRT confidence interval for the coin 
tossing example. Start with a set of proportions to evaluate: pp <- 
seq(0.01, 0.99, 0.01). Compute the log-likelihood scores from 
these using dbinom(). Finally, figure out how to select all the pp that are 
within 1.92 units of logL of the maximum. 



Exercise 6. Additional Exercises 
1. Here you will expand on the study of Type II error from Exercise 2-3.  

First, take your work and turn it into a function that returns the probability 
of Type II error. Have this function accept as arguments the means, 
standard deviations, and sample sizes of samples 1 and 2, as well as the 
number of replications to perform. Set a sensible default for this last 
argument.  

2. Use your new function from question 1 to explore Type II error with 
respect to changing sample size for a range of n’s from 10 to 100. Keep 
all other parameters as they were for Exercise 2-3. Plot the probability of 
Type II error with respect to sample size. 

3. Do a similar study as question 2, but keep sample sizes at 20 and instead 
vary the mean of sample 2 from 10.1 to 12. Plot the probability of Type II 
error as a function of the mean of sample 2. Note that statistical power is 
equal to 1 - Pr(Type II error), so you can plot power from these results 
instead.  



Exercise 6. Additional Exercises (continued) 

4. There are some ideas that the permutation test we did in Ex. 4-5 may be less appropriate 
than what is called a two-sample bootstrap test, which you will perform now. For this, the data 
from both samples are combined under the null hypothesis that there is no difference 
between the groups. Next, with each replication, a bootstrap sample is drawn from these 
combined data for each treatment (species, in this case); these bootstrap samples must be of 
the same size as the original samples. Otherwise, the procedure is the same as the 
permutation test.   

5. There is a file in the Dropbox folder called “Fossil positions.csv” that gives the position in two 
dimensions (x, y) of 50 fossils found in life position on a feeding plane.  Let’s call them 
oysters (the data are simulated). Find this file and read it in to R. Plot their positions. Does it 
appear that these fossils are clumped, random or overdispersed spatially? 

6. We are going to test your observation using something that is called nearest neighbor 
distance (NND). The nearest neighbor to each fossil is the other fossil that is closest in space 
to it. This mean of such NN distance is sometimes used as a test statistic to detect deviations  
from a uniform distribution. The first step is to make a function that, for an assemblage of 
points, computes the NND for each point and returns their mean. You’ll want to use the 
dist() function to get the pairwise distances and then convert it to a matrix for easier 
manipulation. You can get the NND for each specimen using apply on this matrix, but you 
have to deal with the fact that there is zero distance between each specimen and itself; the 
diag() function can help with this.  

7. Mean NND has some known theoretical properties, but there are complications in applying 
them, so we will use parametric bootstrapping to generate its null distribution under a uniform 
distribution of fossils. Make a function that accepts as an argument an observed distribution 
of fossils and returns this null distribution. Note that the simulation of the uniform distribution 
should use for the min and max arguments the observed min and max of the fossils in the x 
and y dimensions.  

8. Is the observed mean NND higher or lower than is typical for the null? Does this mean that 
the sample is clumped or overdispersed compared to the uniform null? Is the difference 
significant?



Exercise answers follow



Exercise Answers 
Ex 1: (1) 10/36 # from counting outcomes  (2) rnorm(n = 50, mean = 100, sd = 10)  (3) pnorm(q = 12, mean = 
10, sd = 1); pnorm(q = 12, mean = 10, sd = 1, lower.tail=FALSE)  (4)  qnorm(p = c(0.25, 0.75), mean = 10, sd 
= 1) 

Ex. 2: x1 <- rnorm(50); x2 <- rnorm(50); t.test(x1, x2)  (2, 3) See following.  (4) Prob of Type II is ~0.14 
with n = 20, ~0.44 when n = 10, and ~0.001 when n =50. 

Ex. 3: (1) See following  (2) sd(mu_hat) # very close to s/sqrt(N)   

Ex. 4: (1) See following  (2)(3)(4) See following  

Ex. 5: (1)  library(paleoTS); cant <- read.paleoTS(“Cantius_lowerL.txt”); fit3models(cant)  # GRW model is 
best, substantially better than URW; support for stasis is negligible.  (2) See following.  (3) See following 

Ex. 6: See following pages for all 



 # test Type I error (Ex. 2-2)

 nrep <- 1000
 NN <- 50   # get same result, regardless of NN
 pv<- array(dim = nrep)
 for(i in 1:nrep){
 x1<- rnorm(NN)
 x2<- rnorm(NN)
 w<- t.test(x1, x2)
 pv[i]<- w$p.value 
 }
 
 hist(pv, col="tan")  # P-values are uniform (0, 1)
 num.sig <- sum(pv <= 0.05)   # counts # significant
 print(num.sig/nrep)  # about 5%, same as alpha
 

 # Standard error of the mean (Ex. 3-1)

 nrep <- 10000
 N <- 100
 ss <- 1
 mu_hat<- array(dim = nrep)
 for(i in 1:nrep){
 x <- rnorm(N, mean = 0, sd = ss)
 mu_hat[i] <- mean(x)
 }
 hist(mu_hat, col="tan")
 abline(v = 0, lwd = 3, col="blue") # true mean in simulations
 print(mean(mu_hat)) # very close to true value of zero

 # test Prob of Type II error (Ex. 2-3)
 nrep <- 1000
 mu1 <- 10
 mu2 <- 11
 s1 <- 1
 s2 <- 1
 NN <- 20
 pval <- array(dim = nrep)
 for(i in 1:nrep){
 x1 <- rnorm(NN, mu1, s1)
 x2 <- rnorm(NN, mu2, s2)
 w <- t.test(x1, x2)
 pval[i] <- w$p.value
 }
  probII <- sum(pval > 0.05) / nrep

 ## P-value and effect size are not the same (Ex. 3-3)
 
 NN <- 2000
 x <- rnorm(NN)
 y <- x + rnorm(NN, 0, 10)
 plot(x, y, pch = 21, col = "white", bg = "tan")
 w <- lm(y ~ x)
 summary(w) # highly significant!
 abline(w)  # but slope very low
 abline(h = 0, lty = 3)



# Permutation test (Ex. 4-2, 4-3, 4-4)
 
# Ex 4-2
 pin <- cope$valve.length[cope$species == "pintoi"]
 sp4 <- cope$valve.length[cope$species == "species4"]
 t.test(pin, sp4)
 
 # Ex. 4-3
 pinsp4 <- c(pin, sp4)
 gg <- c(rep("pin", 15), rep("sp4", 8))
 wt <- t.test(pinsp4 ~ gg)
 tobs <- wt$stat

 # Ex. 4-4 
 stripchart(pinsp4 ~ gg, group.names = c("pintoi", "species4"))
 
 # Ex. 4-5
 nrep <- 1000
 res <- array(dim = nrep)
 for(i in 1:nrep){
 ggp <- sample(gg)  # by default, sample permutes
 wt.p <- t.test(pinsp4 ~ ggp)
 res[i] <- wt.p$stat
 }
 
 # compute p-value from permuted results more extreme
 # than observed t -- in both directions!
 # tobs is negative
 num.extreme <- sum(res < tobs) + sum(res > -tobs) 
 p.value <- num.extreme/nrep   # very similar to t.test 

 # Regression and AIC (Ex. 5-2)

 # cope already read in
 w.0 <- lm(valve.length ~ 1, data = cope)  # intercept only model
 w.t <- lm(valve.length ~ mg.temp, data = cope)
 w.td <- lm(valve.length ~ mg.temp + depth, data = cope)
 a.0 <- AIC(w.0)
 a.t <- AIC(w.t)
 a.td <- AIC(w.td) 
 aa<- c(a.0, a.t, a.td) # combine all AIC into a vector
 names(aa) <- c("intercept", "mg.temp", "mg.temp+depth")
 Daa <- aa - min(aa)  # delta AIC

# RMA and RMAboot functions (Ex. 4-1)

RMA<- function(x,y)
{
 # compute needed summary statistics
 mx <- mean(x)
 my <- mean(y)
 sx <- sd(x)
 sy <- sd(y)
 rxy <- cor(x,y)
 
 # compute slope and intercept
 b1 <- sy / sx * sign(rxy)  
 b0 <- my - b1 * mx

 # combine slope and intercept into a vector
 result <- c(b0,b1)
 return(result) # note abline(result) works!
}

RMAboot<- function(x, y, nrep = 1000, alpha = 0.05)
# compute bootstrap SE on RMA slope
{
 w <- RMA(x,y)
 N <- length(x)
 boot.slope<- array(dim=nrep) # array to hold bootstrap slopes

 for (i in 1:nrep)
   {
   ii <- sample(1:N, replace=T) # bootstrap sample of the indices
   wb <- RMA(x[ii], y[ii])    # RMA of bootstrap sample
   boot.slope[i]<- wb[2]       # second element is the slope
   }
   
  se <- sd(boot.slope)   # standard error is SD of bootstrap sample
  ci <- quantile(boot.slope, probs = c(alpha/2, 1 - alpha/2))
  
  result<- list(estimates = w, se = se, ci = ci)
  
  return(result)
}
 



## LRT CIs (Ex. 5-3)
 
 #  x = 7, n = 10, for logL CI
 pp <- seq(0.01, 0.99, 0.01)
 logl <- dbinom(7, 10, prob=pp, log = TRUE)
 plot(pp, logl, xlab = "Proportion", ylab = "log-likelihood", type=“l")
 abline(v=0.7, lty=2)
 
 # want all logL within 1.92 units of max logL
 yys <- yy - max(yy) # rescale so max logL is zero
 good <- yys > -1.92 # want all those with rescaled logl > -1.92
 ci.lrt <- range(xx[good]) # reports the range of these points = CI
 points(xx[!good], yy[!good], pch=21, cex=0.7, bg="grey")
 points(xx[good], yy[good], pch=21, cex=0.8, bg="blue")

## Ex. 6-1, 6-2, 6-3: Expanded power analysis

 probTypeII <- function(m1, m2, s1, s2, n1, n2, nrep = 1000){
 pval<- array(dim=nrep)
 for(i in 1:nrep){
   x1 <- rnorm(n1, m1, s1)
   x2 <- rnorm(n2, m2, s2)
   w  <- t.test(x1, x2)
   pval[i] <- w$p.value
 }
 probII <- sum(pval > 0.05) / nrep # Pr(type II)
 return(probII)
 }
 
 ## Ex. 5-2
 ## Get series of Pr(type II) with varying n
 m1 <- 10
 m2 <- 11
 s1 <- 1
 s2 <- 1
 Nvec <- seq(10, 100, 10)
 beta <- array(dim  = length(Nvec))
 for(i in 1:length(Nvec)){
 beta[i] <-  probTypeII(m1, m2, s1, s2, Nvec[i], Nvec[i])
 }
 plot(Nvec, beta, type="b", xlab = "n", ylab = "Pr(Type II)")
 
 
 ## Ex. 5-3
 ## Instead, now vary m2
 m1 <- 10
 m2vec <- seq(10.1, 12, 0.1)
 s1 <- 1
 s2 <- 1
 n1 <- 20
 n2 <- 20
 beta <- array(dim  = length(m2vec))
 for(i in 1:length(m2vec)){
 beta[i] <-  probTypeII(m1, m2vec[i], s1, s2, n1, n2)
 }
 plot(m2vec, beta, type="b", xlab = "m2", ylab = "Pr(Type II)")



 ## Two sample bootstrap (Ex. 6-4)
 ## assumes code for Ex. 4-2 has been run
 
 npin <- length(pin)
 nsp4 <- length(sp4)
 
 nrep <- 1000
 res <- array(dim=nrep)
 for(i in 1:nrep){
 b.pin <- sample(pinsp4, size = npin, replace = T)
 b.sp4 <- sample(pinsp4, size = nsp4, replace = T)
 wt.b  <- t.test(b.pin, b.sp4)
 res[i] <- wt.b$stat
 }
 # compute p-value from permuted results more extreme
 # than observed t -- in both directions!
 # tobs is negative
 num.extreme <- sum(res < tobs) + sum(res > -tobs) 
 p.value <- num.extreme/nrep   
 ### resulting p very similar to t-test and permutation

 # NND continued
 
 # function to return average nearest-neighbor (NN) distance for a set of 
points
 meanNN <- function(xy){
 dd  <- dist(xy)   # pairwise distance matrix between points
 ddm <- as.matrix(dd)   # convert to matrix
 diag(ddm) <- 1e6    # need to change diagonal so don't see NN as self
 minD <- apply(ddm, 2, min)   # distance to NN for each point
 mnNN <- mean(minD) # average over all NN's
 return(mnNN)
 }
 
 genNNnull <- function(xy, nrep = 1000){  
   # get min and maxes for simulated uniform distribution
   xmin <- min(xy[,1])
   xmax <- max(xy[,1])
   ymin <- min(xy[,2])
   ymax <- max(xy[,2])
   N <- nrow(xy)

   mNN.b <- array(dim = nrep)
   for (i in 1:nrep){
    xb <- runif(N, xmin, xmax)
    yb <- runif(N, ymin, ymax)
    xy.b <- cbind(xb, yb)
    
    mNN.b[i]<- meanNN(xy.b)
   }
  return(mNN.b) 
 }
 
 # analyze given data set
  NN.obs <- meanNN(xy)
  NN.null <- genNNnull(xy)
  hist(NN.null, col="grey", main = NA, xlab ="Null distrib. of NN")
  ci <- quantile(NN.null, prob = c(0.025, 0.975))
  abline(v = ci, lty= 2, lwd = 2)
  arrows(NN.obs, 200, NN.obs, 100) # signif. bc outside of middle 95% of null

 # Testing spatial clumping using NND (Ex. 6-5, 6-6, 
6-7, 6-8)
 # read in data
  xy <- read.csv("Fossil positions.csv")
  plot(xy)   #looks clumped
 


