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Probability

Probability is related to the
chances that an event occurs

Sample space: set of all
possible outcomes

Different outcomes can have
different associated
probabilities, specified by a
model = probability density

Some sample spaces are
discrete, others continuous

Probability
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Operations on Probabilities

* Probabilities range from 0 to 1 o
* Probabilities of all possible g
outcomes sum to 1 g 3-
e |f all outcomes equally S
probable, can get probabilities
by counting outcomes Outcomes of tossing two fair dice
die 1
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Probability Examples

If events are independent:
Pr(A and B) = Pr(A) Pr(B)
If events are disjoint:

Pr(A or B) = Pr(A) + Pr(B

Two coin tosses: probability of repeated Two tosses or dice: probability of getting

flip? two sixes?
Outcomes: HH, HT, TH, TT
Pr(HH or TT) = Pr(HH) + Pr(TT) Pr(6 and 6) = Pr(6) x Pr(6)
=1/4 +1/4 =1/6 x 1/6



Probability Distributions in R

I

I

* Functions available for common probability
distributions such as normal, t, uniform,
binomial, etc.

I

Probability density

I
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e Example: normal distribution (norm)
e dnorm() density function
e pnorm() cumulative distribution Pr (X < x)
e gnorm() quantile function (values from prob’s)

* rnorm() generate random variates

Cumulative Probability
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Distribution
beta
binomial
Cauchy
chi-squared
exponential
F
gamma
geometric
hypergeometric
log-normal
logistic

Probability Distributions in R

R name additional arguments

beta
binom
cauchy
chisg
exp

f
gamma
geom
hyper
Ilnorm

logis

negative binomial nbinom

normal
Poisson
signed rank
Student’s t
uniform
Weibull
Wilcoxon

noxrm

pois

shapel, shape2, ncp

size, prob
location, scale
df, ncp

rate

dfl, df2, ncp
shape, scale
prob

m, n, k
meanlog, sdlog
location, scale
size, prob
mean, sd

lambda

signrank n

t
unif
weibull

wilcox

df, ncp
min, max
shape, scale

m, n

Examples

density of gamma: dgamma ()
quantiles of normal: gnorm()
random uniform variable: runif ()



Probabilities from Distribution Functions

dnorm (x, mean, sd)

<
(=}

e Common task: get probability of
observing value as extreme or more
so than one observed (P-value)

0.3

Probability density
0.2

* Area near tails of density function

0.1

e (Calculation done from distribution
function - cumulative area of e e e
density function

0.0

pnorm (x, mean, sd)

Cumulative Probability

Example: value of -1.06 from Normal (0,1)

00 0.2 04 06 08 1.0

Left tail: Pr(x<-1.06) pnorm(-1.06) | ' | l |
Right tail: Pr(x >1.06) pnorm(1.06, lower.tail=F) A



Exercise 1. Probabilities and probability distributions

1.

When tossing two fair dice, what is the probability of observing exactly
one six?

Generate a vector of 50 variates uniformly distributed between 10 and 20.

Suppose a set of femora lengths are drawn from a normal distribution
with a mean of 10 and standard deviation of 1. Use the cumulative
distribution function of the normal distribution to compute the probability
of observing a value of less than 12. How about greater than 12?7 What
should these sum to?

Same distribution as question #2. How can you get R to tell you what the
femoral lengths define the 25th and 75th percentiles of this distribution?



Populations and Samples

A population is the complete set of objects
or events of interest for some question

e A sample is a subset of objects chosen to
represent a population

Examples

To a pollster, the population may be the full set of U.S.
voters, but the sample may be a set of 1,000 respondents.

For a paleontologist, the population may be all individuals
that ever existed of Phacops rana, with the sample being 25
specimens collected from an outcrop in New York.

Ideally, samples are representative of populations with respect
to the attributes under study



Populations and Samples

Samples, because they are finite subsets, will not
match the population exactly. These differences
are ascribed to sampling error.

Probability theory

Population > Sample
(Model) < (Data)

Statistics
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Classical Hypothesis Testing

* From the work of Pearson, Neyman, and Fisher
early 20th century

* Dominates undergraduate statistics teaching

 Based on frequentist probability

Karl Pearson R. A. Fisher
wikipedia wikipedia



Classical Hypothesis Tests

Steps
e Specify the null and alternative hypotheses

* Determine a test statistic that reflects the
hypotheses; compute it for observed data

* Using known distribution of test statistic,
compute the P-value of the test statistic:
probability of observing that result, or one
more extreme, if the null hypothesis is true

e Compare the P-value to the significance

level, a. If P < a, reject the null. If P > a, do
not reject the null.



Example: do two populations differ in means?

Null and alternative
hypotheses

Test statistic

P-value from
distribution of test
statistic

Compare to the

significance level, a.

not significant, P = 0.308

t.test(x1l, x2)

Hy:py=py Hy:p #
X, - X,
[ =
nl I’lz
t=1.06
= nl + n2 - 2, lower

Pval= 2 * pt(t, df

F)



Example: even sex ratio?

Data: 20 male, 30 female

* Null and alternative Hy:p=05 H :p#05
hypotheses

o X = number of males (20)
e Test statistic -

[0} NO

0.10
l

e P-value from
distribution of test
statistic

0.08
l

Probability
0.06
l
©
©

0.04
l

() ()

0.02
l

e Compare to the
significance level, a.

@@@@@@@@@@@o@@Oq’TTT IT?%D@@e@@o@@@@@@@@

0.00
l

I I I I I I
0 10 20 30 40 50

not significant, P = 0.203

Number of Males

binom.test(x = 20, n = 50) Pval = 2 * pbinom(x = 20, size = 50)



1- vs 2-tailed tests

H,:pu # py
e Thus far, tests have been two-

tailed; Ha includes both tails of the
distribution of the test statistic

* Some tests are one-tailed because
interest is only in departures in one
direction (e.g., Chi-square)

* Tests should usually be two-tailed.

- - Hy oy >y
e Ask: would | also be interested in a

significant finding in the other
direction?




Types of Error

Reality
Ho is true Ho is false
Test Result | Fail to Reject Ho OK ~_Typellerror

False negative

...............................................................................................................................................

Type | error

Reject Ho False positive OK
Pr (Type l) = a
Pr (Type ll) =3 Power=1-3

There is a tradeoff between
Type | and Type Il error



Exercise 2. Null hypothesis testing

1.

Simulate two samples drawn from a normal distribution with equal means
and standard deviations. Perform a t-test using the R function t.test ().
What is the p-value? What did you expect?

One iteration is not enough to get a sense of the behavior of this test.
Write a script that replicates the previous exercise 1,000 times, recording
the p-value of each replication into a vector. What does this distribution
look like? What proportion of tests show a significant p-value assuming a
= 0.057

Now, investigate Type Il error by simulation, again for the t-test. Recall
that Type Il means that Ho is false but not rejected, therefore we need to
specify how Ho is false. Let’s say that sample 1 was drawn from a
population with a mean of 10 and sd of 1, whereas sample 2 the mean is
11 while sd is still 1. Assume a sample size of n = 20 for each sample.
Run simulations to estimate the probability of Type Il error in this
situation.

Repeat question 3, but now for n = 10 per sample. How much does the
probability of Type Il error change? How about when n = 50 per sample?



Some Issues with P-values

For large enough datasets, nearly all tests are
significant. Statistical significance is not the same as
scientific importance.

Threshold problems: P = 0.049 and P = 0.051 get
different interpretations, but P = 0.051 and P = 0.99
are interpreted the same.

They can be used to reject hypotheses but not
support them.

They often receive too much focus, at the expense
of other important issues (e.g., parameter estimates
and confidence intervals).



ASA’s Statement on P-values (2016)

P-values can indicate how incompatible the data are
with a specified statistical model.

2. P-values do not measure the probability that the studied
hypothesis is true, or the probability that the data were
produced by random chance alone.

3. Scientific conclusions and business or policy decisions
should not be based only on whether a P-value passes a
specific threshold.

4. Proper inference requires full reporting and transparency

5. A P-value, or statistical significance, does not measure
the size of an effect or the importance of a result.

6. By itself, a p-value does not provide a good measure of
evidence regarding a model or hypothesis.



Point Estimation

* A parameter is a quantity describing an
aspect of a population, estimable only
indirectly from samples.

e A point estimate is a number that can be
regarded as the most plausible value of a
parameter

* Example: the sample mean is a point estimate
of the population mean (¥)




Point Estimation

Estimators should be unbiased (accurate) and
have low variance (precise)

High accuracy
High precision

High accuracy
Low precision

Low accuracy
Low precision

Low accuracy
High precision




How Precise?

e Sampling error causes an estimate
to differ from its true value,
according its sampling distribution S

0.3

* Measuring these deviations:

0.2

e their standard deviation iIs called
the standard error

Probability density
0.1

0.0

e the distribution can be used to ' —

compute confidence limits 4 2

Confidence limits and hypothesis tests are related

(1 - a) confidence intervals include all values for which a null
hypothesis test is non-significant at a threshold of a




Determining the Sampling Distribution

How determine sampling distribution of a test statistic?

Can be derived mathematically after making
assumptions about population/data, such as:

e normally distributed
e equal variance
e independent

Non-parametric tests often relax assumptions about
specific distributions, often with lower statistical power

Several computationally intensive alternatives exist for
generating a null / confidence interval: bootstrapping,
permutation tests, parametric bootstrapping



Exercise 3. Point estimation

1.

Is the estimator of the sample mean unbiased? Write a script that uses
simulation to generate many samples from a normal distribution in order
to test this claim.

The standard error of estimates of a sample mean is known analytically
to be s/ sqrt(n), where s is the standard deviation of the sample and n is
the number of observations. Check the results from your script above to
see if they are consistent with this claim.

Simulate x from a standard normal with n = 2000. Now sety <- x +
rnorm(2000, 0, 10). Make a scatterplot of x and y and note the
pattern. Now, do a linear regression of y ~ x and check the p-value. Are
you surprised?



Resampling Approaches

Useful when

e assumptions of parametric approaches are violated
(hon-normal, etc.)

e test statistic does not have known distribution

Unlike non-parametric approaches, resampling approaches
often have statistical power comparable to standard
parametric tests

Costs: computational time/effort, less accurate when
assumptions strictly met



Approaches to Resampling

R code
X = data vector
n = sample size
grp = grouping variable

method nature of resampling

sample, with

Bootstrapping replacement, n times sample(x, size = n, replace = TRUE)
from data '
Permutation shuftling, usually of sample(grp) # default 1is permutation

group labels

..........................................................................................................................................................................................................................................

Parametric ;

Bootstrapping generating from a ## for example

(Monte Carlo parametric null . X <- rnorm(50, mean = 22.1, sd = 1.2)
simulation) ’

see Kowalewski & Novack-Gottshall (2010) PS Short Course.



General Steps

|dentify the hypothesis
Choose the test statistic, T

Calculate the observed test
statistic, ops

Produce a resampling distribution

Compute P-value or Cl based on
resampling distribution

Frequency

0 20 40 60 80

example

Hy:py =y

X1—X, or t




Why Does this Work?

e Bootstrapping uses the data itself as a

0 2 4 6 8 10

proxy for the population distribution £
 Parametric bootstrapping, like null e
hypothesis testing, assumes a Cephalon Lengr

parametric form for the population. It
just generates the sampling distribution
of T through simulation rather than
analytically.



Simple Bootstrap Example

9.|83 11.|33

S - ! !

| |

> B - | |

Confidence interval on sample mean: 2 - : :
- | |

x <- c(9, 10, 10, 11, 11, 12) g - : :
24 | :

R |

I I I I I
95 10.0 105 11.0 11.5

Bootstrap means

é;ZnSZQeorf;[(e1000 bootstrap Xb <- sample(x, replace = TRUE)
(2) Compute sample mean for

mb[i] <- mean(xb)
each

: ci <- quantile(mb, prob = c(0.025, 0.975))
(3) Cl frcl)rg quantiles of # these are simple CI's; there are variants
resampled means # of bootrap CI's that are better



Paleo Bootstrap Example

Trilobita

e Foote (1993) looked at
morphological disparity In
trilobites and blastoids over
time.

e Disparity has unknown
sampling distribution, so Cls
were based on bootstrap
resampling

~
— = 5/'/PCZ




Paleo Bootstrap Example

| Trilobita
.071 'A )}.\‘[\
» Foote (1993) looked at H
morphological disparity in g
. : . s .028FK \
trilobites and blastoids over g } ‘y {
time. o R
-000 IEqTEoT 011 02 1S [p1D2l ECILC] P

e Disparity has unknown |
sampling distribution, so Cls 12887 A

» ¥ N
were based on bootstrap N
: & 3t "\
resampling : ; 1
< 515 1 \
£ ' hY
z 258} T
b e
OlCTcaT 01T 0215 DT ECTICT P

560 497 434 371 308 245
Geologic time (Ma)



Paleo Parametric Bootstrap Example

e Hunt & Chapman (2001) looked
at evidence for instar clustering

in trilobites using mixture
models.

 Parametric bootstrapping was
used to test sequentially the
number of instar clusters.

 The test statistic (likelihood
ratio) does not follow its
expected distribution for
mixture models.

I II I
small large
outlier L4 outlier
° e o
”we » weo 'Y )
...................... ..“.“ — -.-..AA....'..v..., Meeteeteiicsessesssssssnsesneen
2 3 4 5 6 7

Cephalic Length (mm)

FIGURE 2. Dot plot of cephalic length for the Piochaspis sellata data. Each dot represents one specimen; specimens
are binned over a small interval (0.065 mm). Arrows point to the smallest and largest specimens, which were ex-
cluded from the mixture analysis. Roman numerals I-III indicate putative clusters referenced in text.

No. of Bootstrap test Observed Bootstrap

groups Support (H, vs. H,) —2\ Bootstrap results p-value Power
1 0 — — — — —
2 6.73 1 vs. 2 groups 13.46 183/3000 0.061 0.59
3 13.94 1 vs. 3 groups 27.89 57/2000 0.029* 0.87
4 19.06 3 vs. 4 groups 10.23 504 /1000 0.504 0.10




Exercise 4. Resampling approaches

1.

One drawback of RMA is that it is not straightforward to compute confidence
limits and standard errors for the slope. For this exercise, we’ll make a new
function, RMAboot(), to compute bootstrap standard errors on the RMA slope.
You'll need to loop through a large number of replicates, and for each rep, take
a bootstrap sample, compute the RMA slope for this bootstrap sample, and
store it in an array. One of the tricky parts here is that the observations are
paired, so you need to sample the indices; if there are N points, sample (1:N,
replace=TRUE) will create a bootstrap sample of the indices.

Return to the cope data. We are going to test if populations from the species P,
pintoi and P. species4 have different mean sizes. Extract the valve lengths from
these two species into separate vectors, pin and sp4. Performa t. test on
these vectors.

The function t . test also allows one to specify the test with a formula, which

will be more convenient for a permutation test. This formula is specified as y ~
group vector, where y is a vector that includes lengths from both species and
group specifies which species they are from. Implement the same t-test as in
#2 but use the formula interface.

A good way to visualize the distribution of small datasets of one variable is
through stripchart (). Check out its help and figure out how to use formula
notation to show the two species separately.

Now, write a script to perform a permutation test for these same data. Use the ¢
statistic returned by t. test as your test statistic. With each iteration of the
loop, you'll need to permute the group vector using the samp1le function.
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Likelihood

Basis for statistical inference, developed by R. A.
Fisher

Likelihood (L) of model parameters (8) given data (x),
Is the probability of the data, given the model:

L(@|x) = Pr(x|0)
Parameter values that yield the highest probabillities
of producing observed data are favored

Likelihood also provides a basis for evaluating the
support different models receive



Probability

0.10 0.20 0.30

0.00

Probability vs. Likelihood

Pr(x|0)

parameters are fixed,
data are variables

P[Head] = 0.5; 10 tosses

Number of Heads

Likelihood

0.10 0.20 0.30

0.00

parameters are variables

L(O|x)

data are fixed,

5 Heads; 10 tosses

0.0

0.2

0.4 0.6

P [Head]

0.8

1.0




Log-likelihood

* |t is usually more convenient to work with log-
likelihoods, logL = log(L)

 With multiple, independent observations, the total
likelihood is their product and the total log-likelihood
IS their sum

L(O|x;,x,) = L(O|x)) - L(O]|x,)

logL(0|x,x,) = logL(0|x)) + logL(0|x,)



Example: coin tosses

 Flip a coin 10 times. Data (x) are 7 heads 3 tails
H+: fair coin, Pr[H] =p = 0.5
Ho: possibly unfair coin; p can vary

e Free parameters
Hi: none
Ho: p



Probability of the Data

* Binomial distribution: probability of x successes in n
trials, given probability of success p:

n!

Prixip) =0 _'x), p*(1—p)"™*

e Likelihood for H1: fill in x (7 Heads), n (10 trials), and
p (0.5), compute result.

L(H1|x)=(),117 dbinom(x /, size = 10, prob = 0.5)

logL(H{|x) = —2.14 dbinom(x = 7, size = 10, prob = 0.5,

log = T)



Likelihood of H-

For Ho, p is freely variable, and unknown. We want to
choose a value for p such that it maximizes L(H2), which
is same as maximizing logL(H>).

L(p = 0.1) dbinom(x = 7, size = 10, prob = 0.1) 0.000
"""" (p=02)  dbinom(x = 7, size = 10, prob = 0.2) . 0001
"""" (p=03)  dbinom(x = 7, size = 10, prob = 6.3) | 0.009
"""" (p=04)  dbinom(x = 7, size = 10, prob = 0.4) . 0042
"""" L(p=05) | dbinom(x = 7, size = 10, prob = 0.5) 0417
"""" (p=06) = dbinom(x = 7, size = 10, prob = 6.6) | 0215
"""" (p=07) | dbinom(x = 7, size = 10, prob = 0.7) | 0267
"""" (p=08 | dbinom(x = 7, size = 10, prob = 0.8) 0201
"""" (p=09)  dbinom(x = 7, size = 10, prob = 0.9) .  0.057




Likelihood

0.20

0.10

Likelihood of H-

n!

Lp|x) = ———=p (1 —p)"™
o ‘ x!(n —x)!
o l
T O
O
o 2
' D For logL, get derivative and
L= set equal to zero, solve for p.
(@)
g S l
0.0 0.2 0.4 0.6 0.8 1.0 X
Proportion [p] ]5 =—=0.7
n

The value of p that produces the highest likelihood is
called the maximum likelihood estimate (MLE).



Asymptotic Properties of MLEs

n— oo

unbiased:. the expected value is equal to the true
parameter

efficient. has the smallest variance among
unbiased estimators

normal: the sampling distribution is Gaussian

consistent. becomes arbitrarily close to the true
parameter



Likelihood of H-

* For Ha, the best estimate for p is 0.7. Substituting
into the probability function gives L(H2) and logL(H>):

n!

L(Hy) = — o p'(1 = "

e Likelihood for Hz: fill in x (7 Heads), n (10 trials), and
MLE of p (0.7), compute result.

L(H2|x)=0.266 dbinom(x = 7, size 10, prob = 0.7)

logL(H2|X)=—1.32 dbinom(x /, size = 10, prob = 0.7, log = T)



Choosing Among Models: LRTs

L(H2) is higher than L(H1). How do we interpret this?

Generally log-likelihoods increase with model complexity

One can use a likelihood ratio test (LRT) to see if more complex
model is significantly better than simpler one. The likelihood ratio
IS:

 L(H))

A =
L(H))

Some models are nested — simpler one is special case of the
more complex one. For nested models, -2 times the the log of the
likelihood ratio is approximately distributed as a Chi-square, with
df as the difference in the number of free parameters in H1 and Ho.

—2log A ~ y? —2log —2 <108L(H1) — lOé’L(Hz))

L(H,)



LRT for coin flip

For our coin toss, L(H1) = 0.117 and L(H2) = 0.266

0.117

—2log A =—-2log e = 1.64

pchisg(q = 1.64, df = 1, lower=FALSE) # P = 0.20

1.5 2.0 2.5

Probability density

0.0 05 1.0
I I

-2 log[LR]



Information Criteria: AIC

 Can use Akaike Information Criterion to balance goodness-of-
fit (logL) and model complexity (K = number of free parameters)

AIC = —2logL + 2K

* Corrected version, for when sample sizes are not overly large (n/
K < 40)

AICq = AIC + (2K [K +1))/(n — K — 1)

* AIC measures amount of information lost when approximating
reality with a model; lower AIC scores are better



Information Criteria: BIC

* Another criterion is the Bayesian Information

Criterion, which tends to penalize model complexity
more strongly than AIC:

BIC = —2log L + K log(n)

 BI|C can be considered a simple approximation to
Bayesian approaches



Information Criteria: AIC

e AIC and AICc scores are often converted to AAIC

scores by subtracting from each model the score of the
best.

e AAIC are sometimes converted to Akaike weights,

which sum to 1 across models, indicating proportional
support.

. AAIC interpretation
A; = AIC; — min(AIC) | P
<2 substantial support
1 A 4 considerably less support
eXp - 5 7
w,; — > 10 essentially no support




Information Criteria: AlC

e AIC makes the most sense when all our models are much
simpler than reality. If reality is simple enough to be included
among our models, Bayesian approaches have better
properties

e Because AAIC determines interpretations, it is the additive
difference between AIC scores that matters

e AIC measures relative, not absolute fit. The best model may still
be poorly supported.

e |f possible, include a null model in the comparisons

e QOther approaches to model adequacy involve simulation
under the null hypothesis and assessing if the observed
data deviate from that



Summary: Goin Toss

model  likehood = K | AlCc . AAICc  Akaike weight

............................................................................................................................................................................................................................................




Likelihood

Likelihood and Confidence Intervals

There is information in the shape of the likelihood function
about precision of a MLE

X =140, n =200

0.20
I

Likelihood

0.10
I

Proportion Proportion

Two different approaches use information on how narrow the
likelihood peaks are.



Wald Confidence Intervals

 The standard error of a MLE is related to the second
derivative of the log-likelihood function near the peak

e Can work out analytically, or if not solvable, numerically

p(l —p)
n

e For binomial: SE(ﬁ)=\/

 Under assumption of normality, confidence intervals can
be computed from the percentiles of the standard
normal distribution

95% Cl: p x1.96 - SE(p)

log-Likelihood
25 -20 -15 -10 -5

00 02 04 06 08 10

Proportion



Likelihood Ratio Confidence Intervals

e |ikelihood ratio confidence intervals ( = profile likelihood
Cl's) can be thought of as applying a LRT to all
parameter values and retaining those not significantly
different from the MLE as delimiting the CI

 Upper 95% tail of the y2 (df = 1) is 3.84. Since twice the
differences in log-likelihoods should be less than this,
keep all parameter values with log-likelihoods within
1.92 units of the max log-likelihood

—2log A ~ y*
—2 (logL(H,) — logL(H,))

log-Likelihood
25 -20 -15 -10 -5

00 02 04 06 08 1.0

Proportion



Likelihood Ratio Confidence Intervals

-10 -5

log-Likelihood
-15

-20

-25

method

95% ClI

(0.42, 0.98)

(0.40, 0.91)

see Exercise 5-3

Proportion

08 1.0

Proportion
0.6
|

0.4

0.2

- Wald LRT



Application: Time-series of Traits
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How should these data be interpreted?
Qualitatively at first, then with null models.



trait

General Random Walk

step
distribution
+1.0
-0.2
+2.1
5 2 9 6 1 2 3
Step size

mean (us) = directionality

variance (02s) = volatility




Mean step (Us) = directionality

phenotype

time
Step size

phenotype

Step size =

time



Step variance (0s2) = volatility

phenotype

time

phenotype

Step size

time



Expected Change over Time

I
100

60

40

20

fite



General Random Walk (GRW)

« Same general model can be used for two modes:

Other names

General RW
Directional Evolution Directional RW Us # 0
Biased RW
Symmetric RW .
Random Walk Unbiased RW s =0




Summary So Far...

Distribution of AD

differences (Az)

Directional Evolution Az ~ N(t,us, t()'g)

Random Walk Az ~ N(O, tg?)

We want to be able to fit these models -- determine
best parameter values, and measure of model support

Likelihood



Goals

« Use likelihood approaches to get best parameter

estimates (us, 0s2), and to compare fit of directional
change and random walk models.

 Likelihood calculations involve the probability density

of the Normal distribution

Pr(Az) = ;W exp< (AZQ_VM)2>

Distribution of AD differences

(Az)

Directional Evolution Az ~ N(t,us, tO'g)

Random Walk Az ~ N(07 tO‘?)




Example CGalculation

- Example, for General Random Walk: M = tus, V = tos?

1 (Az — M)?
Pr(Az) = P exp ( v )
1 (AZ B tﬂs)z
HMm 82 = i ( 2t03 >
1 (AZ B tMS)Q

logL(Mpw; Az) = 5 log(2mto?) Yo

S

» For multiple Az;, simply sum logL over all Az



Example CGalculation

Assume t = 10 steps,
compare two sets of
parameter estimates for
Directional model:

,Us — O US — 025
0s2 = 0.01 o0s2 = 0.01

N(©0,01) N (2.5,0.1) K

| |
-2 -1

i

00 O
2 3 4

Az
Az ~ N(tus,to?)



Standardized Mean
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Log-likelihood Surface

® M. Length
oM, L/W

| | I
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Time (Myr)

data from:
Clyde & Gingerich (1994)

1.5

10

Use hill-climbing algorithm to
find peak (= MLE)




Exercise 5. Likelihood

1. Let’s look at an example time-series analysis using the functions in the
paleoTS package. First, install the package if necessary and then load it
with the 1ibrary function. Next, read in Gingerich’s Cantius data with
cantius <-read.paleoTS(“Cantius_lowerL.txt”) . If this function is
called without any argument, the user is prompted to navigate to the file
location. First plot the data. Finally, fit some models to these data with the
function fit3models (cantius). Take a look at the printed results.
Which model is best, and which is the worst? How do you interpret the
strength of evidence favoring the best model? Does this match the visual
impression of the data?

2. Return again to the two regressions you fit to the cope data yesterday
(valve.length ~ mg.temp, valve.length ~ mg.temp + depth). Re-
run them from your script. Add an additional model that just has an
intercept (valve.length ~ 1). Use the AIC() function to get the AIC
score for each model, and then compute AAIC values. How do you interpret
these results in terms of the support of these models?

3. Figure out how to determine the LRT confidence interval for the coin
tossing example. Start with a set of proportions to evaluate: pp <-
seq(0.01, 0.99, 0.01). Compute the log-likelihood scores from
these using dbinom (). Finally, figure out how to select all the pp that are
within 1.92 units of logL of the maximum.



Exercise 6. Additional Exercises

1.

Here you will expand on the study of Type Il error from Exercise 2-3.
First, take your work and turn it into a function that returns the probability
of Type |l error. Have this function accept as arguments the means,
standard deviations, and sample sizes of samples 1 and 2, as well as the
number of replications to perform. Set a sensible default for this last
argument.

Use your new function from question 1 to explore Type Il error with
respect to changing sample size for a range of n’s from 10 to 100. Keep
all other parameters as they were for Exercise 2-3. Plot the probability of
Type Il error with respect to sample size.

Do a similar study as question 2, but keep sample sizes at 20 and instead
vary the mean of sample 2 from 10.1 to 12. Plot the probability of Type Il
error as a function of the mean of sample 2. Note that statistical power is
equal to 1 - Pr(Type Il error), so you can plot power from these results
iInstead.



Exercise 6. Additional Exercises (continued)

4.

There are some ideas that the permutation test we did in Ex. 4-5 may be less appropriate
than what is called a two-sample bootstrap test, which you will perform now. For this, the data
from both samples are combined under the null hypothesis that there is no difference
between the groups. Next, with each replication, a bootstrap sample is drawn from these
combined data for each treatment (species, in this case); these bootstrap samples must be of
the same size as the original samples. Otherwise, the procedure is the same as the
permutation test.

There is a file in the Dropbox folder called “Fossil positions.csv” that gives the position in two
dimensions (x, y) of 50 fossils found in life position on a feeding plane. Let’s call them
oysters (the data are simulated). Find this file and read it in to R. Plot their positions. Does it
appear that these fossils are clumped, random or overdispersed spatially?

We are going to test your observation using something that is called nearest neighbor
distance (NND). The nearest neighbor to each fossil is the other fossil that is closest in space
to it. This mean of such NN distance is sometimes used as a test statistic to detect deviations
from a uniform distribution. The first step is to make a function that, for an assemblage of
points, computes the NND for each point and returns their mean. You'll want to use the

dist () function to get the pairwise distances and then convert it to a matrix for easier
manipulation. You can get the NND for each specimen using apply on this matrix, but you
have to deal with the fact that there is zero distance between each specimen and itself; the
diag () function can help with this.

Mean NND has some known theoretical properties, but there are complications in applying
them, so we will use parametric bootstrapping to generate its null distribution under a uniform
distribution of fossils. Make a function that accepts as an argument an observed distribution
of fossils and returns this null distribution. Note that the simulation of the uniform distribution
should use for the min and max arguments the observed min and max of the fossils in the x
and y dimensions.

Is the observed mean NND higher or lower than is typical for the null? Does this mean that
the sample is clumped or overdispersed compared to the uniform null? Is the difference
significant?



Exercise answers follow



Exercise Answers

Ex 1: (1) 10/36 # from counting outcomes (2) rnorm(n = 50, mean = 100, sd = 10) (3) pnorm(g = 12, mean =

10, sd = 1); pnorm(g = 12, mean = 10, sd = 1, lower.tail=FALSE) (4) qgnorm(p = c(0.25, 0.75), mean = 10, sd
:1)

Ex. 2: x1 <- rnorm(50); x2 <- rnorm(50); t.test(x1l, x2) (2, 3) See following. (4) Prob of Type II is ~0.14
with n = 20, ~0.44 when n = 10, and ~0.001 when n =50.

Ex. 3: (1) See following (2) sd(mu_hat) # very close to s/sqrt(N)
Ex. 4: (1) See following (2)(3)(4) See following

Ex. 5: (1) 1library(paleoTS); cant <- read.paleoTS(“Cantius_lowerL.txt”); fit3models(cant) # GRW model 1is
best, substantially better than URW; support for stasis is negligible. (2) See following. (3) See following

Ex. 6: See following pages for all



# test Type I error (Ex. 2-2)

nrep <- 1000
NN <- 50 # get same result, regardless of NN
pv<- array(dim = nrep)
for(i in 1l:nrep){
x1<- rnorm(NN)
x2<- rnorm(NN)
w<- t.test(xl, x2)
pv[i]<- w$p.value

}

hist(pv, col="tan") # P-values are uniform (0, 1)
num.sig <- sum(pv <= 0.05) # counts # significant
print(num.sig/nrep) # about 5%, same as alpha

# Standard error of the mean (Ex. 3-1)

nrep <- 10000
N <- 100
ss <- 1
mu_hat<- array(dim = nrep)
for(i in 1:nrep){
x <- rnorm(N, mean = @, sd = ss)
mu_hat[i] <- mean(x)
ky
hist(mu_hat, col="tan")
abline(v = 0, lwd = 3, col="blue") # true mean in simulations
print(mean(mu_hat)) # very close to true value of zero

# test Prob of Type II error (Ex. 2-3)

nrep <- 1000
mul <- 10
muZ2 <- 11

sl <-1

s2 <- 1

NN <- 20

pval <- array(dim = nrep)
for(i in 1:nrep){
x1 <- rnorm(NN, mul, sl1)
x2 <- rnorm(NN, mu2, s2)
w <- t.test(xl, x2)
pval[i] <- w$p.value
ks
probII <- sum(pval > 0.05) / nrep

## P-value and effect size are not the same (Ex. 3-3)

NN <- 2000

x <- rnorm(NN)

y <- X + rnorm(NN, 0@, 10)

plot(x, y, pch = 21, col = "white", bg = "tan")
w <- ImCy ~ x)

summary(w) # highly significant!

abline(w) # but slope very low

ablineCh = 0, 1ty = 3)




# RMA and RMAboot functions (Ex. 4-1)

RMA<- function(x,y)
{

# compute needed summary statistics
mx <- mean(x)

my <- mean(y)

sx <- sd(x)

sy <- sd(y)

rxy <- cor(x,y)

# compute slope and intercept
bl <- sy / sx * sign(rxy)
bd <- my - bl * mx

# combine slope and intercept into a vector
result <- c(b@,bl)

return(result) # note abline(result) works!

RMAboot<- function(x, y, nrep = 1000, alpha = 0.05)
# compute bootstrap SE on RMA slope

{

w <- RMA(x,y)

N <- length(x)

boot.slope<- array(dim=nrep) # array to hold bootstrap slopes

for (1 in l:nrep)

{

ii <- sample(1:N, replace=T) # bootstrap sample of the indices
wb <- RMA(x[1ii], y[iil]) # RMA of bootstrap sample
boot.slope[1i]<- wb[2] # second element is the slope

}

se <- sd(boot.slope) # standard error is SD of bootstrap sample
ci <- quantile(boot.slope, probs = c(alpha/2, 1 - alpha/2))

result<- list(estimates = w, se = se, ci1 = C1)

return(result)

# Permutation test (Ex. 4-2, 4-3, 4-4)

# Ex 4-2
pin <- cope$valve.length[cope$species == "pintoi"]
sp4 <- cope$valve.length[cope$species == "speciesd"]

t.test(pin, sp4)

# Ex. 4-3

pinsp4 <- c(pin, sp4)

gg <- c(rep("pin", 15), rep("sp4", 8))
wt <- t.test(pinsp4 ~ gg)

tobs <- wt$stat

# Ex. 4-4
stripchart(pinsp4 ~ gg, group.names = c("pintoi", "species4"))

# Ex. 4-5

nrep <- 1000

res <- array(dim = nrep)

for(i in 1l:nrep){
ggp <- sample(gg) # by default, sample permutes
wt.p <- t.test(pinsp4 ~ ggp)
res[i] <- wt.p$stat

ks

# compute p-value from permuted results more extreme

# than observed t -- in both directions!

# tobs 1s negative

num.extreme <- sum(res < tobs) + sum(res > -tobs)
p.value <- num.extreme/nrep # very similar to t.test

S

Regression and AIC (Ex. 5-2)

cope already read 1in

.0 <- Im(Cvalve.length ~ 1, data = cope) # intercept only model
.t <- Im(valve.length ~ mg.temp, data = cope)

.td <- Im(valve.length ~ mg.temp + depth, data = cope)

.0 <- AIC(w.0)

.t <- AIC(w.t)

.td <- AIC(w.td)

aa<- c(a.@, a.t, a.td) # combine all AIC into a vector

names(aa) <- c("intercept", "mg.temp", "mg.temp+depth")

Daa <- aa - minCaa) # delta AIC

Q Q9 9 = = =




## LRT CIs (Ex. 5-3)

# x =7, n=10, for logL (I

pp <- seq(0.01, 0.99, 0.01)

logl <- dbinom(7, 10, prob=pp, log = TRUE)

plot(pp, logl, xlab = "Proportion", ylab = "log-likelihood", type=“1")
abline(v=0.7, lty=2)

# want all logL within 1.92 units of max loglL

yys <- yy - max(yy) # rescale so max logL 1is zero

good <- yys > -1.92 # want all those with rescaled logl > -1.92
ci.lrt <- range(xx[good]) # reports the range of these points = (I
points(xx[!good], yy[!good], pch=21, cex=0.7, bg="grey")
points(xx[good], yy[good], pch=21, cex=0.8, bg="blue")

## Ex. 6-1, 6-2, 6-3: Expanded power analysis

probTypelIl <- function(ml, m2, sl, s2, nl, n2, nrep = 1000){
pval<- array(dim=nrep)
for(i in 1:nrep){
x1 <- rnorm(nl, ml, sl)
x2 <- rnorm(n2, m2, s2)
w <- t.test(x1l, x2)
pval[i] <- w$p.value
¥
probII <- sum(pval > 0.05) / nrep # Pr(type II)
return(probII)

}

## Ex. 5-2
## Get series of Pr(type II) with varying n
ml <- 10
m2 <- 11
sl <-1
s2 <-1
Nvec <- seq(10, 100, 10)
beta <- array(dim = length(Nvec))
for(i in 1:length(Nvec)){
beta[1] <- probTypeII(ml, m2, sl, s2, Nvec[i], Nvec[1i])
¥
plot(Nvec, beta, type="b", xlab = "n", ylab = "Pr(Type II)")

## Ex. 5-3
## Instead, now vary mZ
ml <- 10
m2vec <- seq(10.1, 12, 0.1)
sl <-1
s2 <-1
nl <- 20
nZ <- 20
beta <- array(dim = length(m2vec))
for(1 in 1l:length(m2vec)){
beta[i] <- probTypeII(ml, m2vec[i], s1, s2, nl, n2)
ks
plot(m2vec, beta, type="b", xlab = "m2", ylab = "Pr(Type II)")




## Two sample bootstrap (Ex. 6-4)
## assumes code for Ex. 4-2 has been run
npin <- length(pin) # NND continued
nsp4 <- length(sp4) . . .
# function to return average nearest-neighbor (NN) distance for a set of
points
:g:p<f ai?23(dim=nrep) meanNN <- function(xy){
. dd <- dist(xy) # pairwise distance matrix between points
for(i in 1:nrep){ ddm <- as.matrix(dd) # convert to matrix
b.pin <- sample(p}nsp4, Size = npin, replace = 1) diag(ddm) <- leb6 # need to change diagonal so don't see NN as self
b.sp4 <- sample(p1n§p4, size = nsp4, replace = T) minD <- apply(ddm, 2, min) # distance to NN for each point
wt.b <- t.test(b.pin, b.sp4) mnNN <- mean(minD) # average over all NN's
r'eS['i.:l <- Wt.b$Stat r-etur-n(mnNN)
¥ }
# compute p-value from permuted results more extreme
# than observed t -- in both directions! genNNnull <- function(xy, nrep = 1000){
# tobs 1s negative # get min and maxes for simulated uniform distribution
num.extreme <- sum(res < tobs) + sum(res > -tobs) xmin <- min(xy[,1]1)
p.value <- num.extreme/nrep xmax <- max(xy[,1])
### resulting p very similar to t-test and permutation ymin <- min(xy[,21)
ymax <- max(xy[,2])
N <- nrow(xy)
MNN.b <- array(dim = nrep)
for (1 in l:nrep){
xb <- runif(N, xmin, xmax)
yb <- runif(N, ymin, ymax)
xy.b <- cbind(xb, yb)
mMNN.b[1]<- meanNN(xy.b)
}
return(mNN.b)
}
# Testing spatial clumping using NND (Ex. 6-5, 6-6, ,
6-7, 6-8) # analyze given data set
’ : NN.obs <- meanNN(xy)
# read in data
. . o " NN.null <- genNNnull(xy)
Xy <- read.csv("Fossil positions.csv™) hist(NN.null, col="grey", main = NA, xlab ="Null distrib. of NN")
plot(xy) #looks clumped ci <- quantile(NN.null, prob = c(0.025, 0.975))
abline(v = ci, lty= 2, 1lwd = 2)
arrows(NN.obs, 200, NN.obs, 100) # signif. bc outside of middle 95% of null




