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Purpose

• Get comfortable with R 


• R commands, syntax, rules


• R programming



Background on R

• Descended from S (Bell Labs); both S and R are used 
heavily by statisticians


• Open source, maintained by a volunteer committee

• Practical Benefits:


• Free, available for all major OS


• Scientific Benefits:

• High level (powerful functions built-in)


• Powerful statistical, graphics capabilities


• Extendable (user contributed packages)



Getting additional help

“An Introduction to R”  not very useful; go to “contributed 
documentation” > Maindonald



Ways to use R

• As a statistics package 
(ANOVA, nonparametrics, 
ordinations)


• As a programming 
language (resampling, 
morphometrics,  likelihood 
approaches)


• Phylogenetic comparative 
methods


• For publication graphics
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FIGURE 5.—Phylogeny of ornithischian dinosaurs from the composite tree of Carrano (2006) modified according to other studies (Ford and 
Kirkland, 2001; Weishampel et al., 2003; Novas et al., 2004; Vickaryous et al., 2004; Averianov et al., 2006; Ryan, 2007; Carpenter et al., 2008; 
Maidment et al., 2008; You et al., 2008; Arbour et al., 2009; Boyd et al., 2009; Dalla Vecchia, 2009; Sues and Averianov, 2009; Butler et al., 2010), 
with branch lengths scaled to geological time.  Taxon names are omitted for clarity, although a few of the larger named clades are labeled below the 
appropriate node.  Symbol sizes are scaled to log femur length.  Time axis extends backwards from the youngest terminal taxa, in millions of years.
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Models were fit in the R environment (45), using functions from the paleoTS
package, version 0.4-5 (46). Previous analyses used a restricted maximum-like-
lihood approach that divides a sequence into adjacent, ancestor-to-descendant
trait differences, which are evaluated by a likelihood function. Here we use
a full maximum-likelihood approach that considers all samples in a sequence
jointly as a single draw from a multivariate normal distribution (22). In the
paleoTS package, these two options are implemented as the “AD” and “Joint”
methods, and simulations show that they perform similarly in most respects
(22), except that the “Joint” approach that we use here is better able to detect
noisy trends (22).

Model support was measured using AICc. Simulations suggest that AICc
may unduly favor complex models in this context, even when simple models
are true (SI Appendix, Fig. S7); this effect seems especially pronounced for
models that involve a shift to a new stasis mean (punctuations, random
walk–stasis, and directional–stasis). Accordingly, for sequences best fit by any
complex model, we implemented an additional, more stringent test via
parametric bootstrapping (47). This approach simulates trait evolution under
the best-supported simple model and then fits that (true) model in addition
to the best-supported complex model. The difference in support was mea-
sured as the likelihood ratio test statistic, which is equal to twice the dif-
ference in log-likelihood between simple and complex models. This process
was repeated over 499 replicates to generate a null distribution of the
likelihood ratio statistic, with the P value computed as (k + 1)/500, where k is
the number of replicates in which the likelihood ratio statistics exceeded the
observed value (48).

Logistic regressions were performed to test whether the probability of
a sequence being best supported by a particular model or set of models was

related to sequence length (number of samples, log-transformed), sequence
duration (log-transformed), broad categories of environment (terrestrial,
lacustrine, marine-shallow, marine-deep, marine-pelagic), and categories of
fossils (planktonicmicrofossils, benthicmicrofossils, invertebratemacrofossils,
vertebrates). Stepwise AIC was used to choose among regression models,
which were run separately to predict the probability of strict stasis, any kind
of stasis, directional evolution, and any complex model. Regressions were
performed using the glm and stepAIC functions in R, and the glht function
from the multcomp package (49) was used to test for post hoc differences
among the environmental and taxon categories. Because individual lineages
often supplied multiple, potentially correlated traits, sequences are not truly
independent and thus these regressions are best considered heuristic (mean
pairwise absolute correlation between changes in trait means measured
from the same series: 0.403, SD = 0.280).

Coordination of Results Among Traits Within Species Lineages. For every spe-
cies lineage for which more than one trait was measured (n = 71), we tallied
how frequently pairs of traits showed (i) the same best-fit model of evolu-
tionary mode; (ii) the same type of evolutionary mode (simple or complex);
and (iii) the same timing of shifts in evolutionary dynamics, if both traits
were best characterized by a complex mode of evolution. We considered all
shift points within 1.92 log-likelihood units of the maximum-likelihood so-
lution when comparing pairs of traits. This set of shift points represents all of
the solutions within a 95% confidence interval (16).

Simulating Trait Evolution That Tracks Environmental Change. Simulating a
scenario in which traits evolve in response to changing environmental con-
ditions requires (i) a proxy curve capturing temporal change in an environ-
mental variable, (ii) a model and calibration that determines the sensitivity
of traits to environmental change, and (iii) realistic sample sizes and chro-
nologies for evolutionary sequences.

We used as our proxy for environmental change a composite curve of
deep-sea oxygen isotope values (50) that is commonly used as a surrogate for
overall climate state (Fig. 3). This curve is particularly suitable because it is of
long duration (5.32 My) and fine temporal resolution (successive points
separated by 1–5 ky). Moreover, this curve mostly reflects an aspect of the
environment—temperature—that commonly covaries with biological traits.
To better relate this curve to traits, we converted it from its original isotopic
units to degrees Celsius by scaling it so that the difference between the
present day and the last glacial maximum (19–23 Ka) is 4 °C, which is a rea-
sonable global estimate (51).

The temperature-tracking model assumes a simple linear relationship
between temperature and trait values: x = b0 + b1T + e, where x is the trait,
b0 and b1 are the intercept and slope of its relationship with temperature
(T), and e is a normally distributed residual term. The sensitivity of the trait
to temperature is given by b1. Evolutionary changes that are unrelated to
temperature are represented by the variance of e. This relationship is con-
sistent with populations adaptively tracking changes in temperature, as-
suming a response lag that is negligible on paleontological timescales (see
refs. 52 and 53). We calibrated this model using empirical examples of
Bergmann’s rule, the pattern by which body size tends to be larger in colder
parts of a taxon’s geographic range (54). We use two different calibrations
based on taxa for which this relationship has been demonstrated in the
modern world and in the fossil record: the deep-sea ostracode Poseidonamicus
and the packrat Neotoma. The Poseidonamicus regression considered the
log of carapace length among modern populations from the species
Poseidonamicus major (55). Published body mass versus temperature rela-
tionships for Neotoma cinerea were digitized from Smith and Betancourt
(56). The resulting body mass data were cube-root transformed to behave
similarly to linear size measurements, log-transformed, and regressed
against temperature. These particular calibrations bracket a range of
Bergmann’s rule patterns from strong in Poseidonamicus to moderate in
Neotoma (SI Appendix, Fig. S8).

To simulate sequences with realistic chronologies and sample sizes, we
drew randomly with replacement from the subset of the empirical sequences
that were of appropriate duration (<3 My) and resolution (>10 ky) to be
compared with the climate curve (n = 337). Each sampled chronology was
placed randomly within the temporal span of the temperature curve, and
the temperatures at that chronology’s sampling times were computed by
linear interpolation. From these temperature data, trait values were gener-
atedwith the formula above using the values from either the Poseidonamicus
or Neotoma calibrations. These generated sequences reflect true population
means, to which sampling error was added as normally distributed variation
with a mean of zero and a variance of s2/n, where s2 is the within-population
variance and n is the sample size taken from the selected empirical sequence.
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Fig. 4. Comparison of temperature-tracking simulations to empirical results.
(A) Best-fitting models for simulations in which trait evolution tracks tem-
perature comparedwith that for the subset of empirical sequences (n = 337) of
the appropriate duration and resolution to be compared with the global
temperature curve. The empirical results are in tan next to two different cal-
ibrations of the temperature-tracking model: for the deep-sea ostracode
P. major (green) and the packrat N. cinerea (blue). Bar heights indicate the
proportion of empirical or simulated outcomes (2,000 replications) that
resulted in that model or set of models being best supported according to
AICc. Stasis includes the broad sense model and strict stasis, with the contri-
bution of the latter shown as hatching (too limited to see in the simulated
datasets). Mode shift includes the four models involving a shift from stasis to
a randomwalk or directional change, or vice versa. Black lines at the top of the
bars span 95% binomial confidence limits on the proportions. (B) Density plots
showing the distribution of magnitudes of evolutionary change across em-
pirical and simulated data sets. Evolutionary variation was measured as the SD
of sample means, with the contribution of sampling error removed (Methods).
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The R Session



>  2

>  2 + 2

x <- 8

Assignment operator

x * 5

y <- “tooth”

2

4

# assigns variable, x, a value of 8

The Interactive R prompt

Saving information as variables

40



Variable assignment

1. Can also use  =  and -> as assignment operator	
y <- 18

y = 18

18 -> y

2.  Names in R are case-sensitive

	

tri <- 18

Tri <- 25  # these are different variables



Types of variables

Mode Example

Numeric 5, 2.34

Character “Ostracoda”, ‘b’

Logical TRUE, FALSE, T, F

Factor {for categorical data}

Complex 2 + 3i



Action Symbol Example

Arithmetic + - * / ^ 2 + 2 
5 * 4 + 1 ^12 
5 * (4 + 1)^12

Assignment <- x <- 2 + 3

Exercise 1. Variable Assignment 

1. Create a variable, x, and assign it a value of 46.  Create a new 
variable, xx, that is equal to the one-half of x, raised to the 4th 
power. 

2. Create a variable, y, and assign it a value of TRUE.  Then 
assign y a value of “Cambrian”.

• R uses standard rules for order of operations:  ̂   
before */ before +- 

• To group operations, or if unsure of the rules, use 
parentheses



Functions
Functions take information (=arguments), do 
something with it, and return a result

seq() generates regular sequences of numbers
seq(1,5) 1 2 3 4 5
1:5    1 2 3 4 5    # special shortcut

seq(1,10) Arguments specified by order

seq(from = 1, to = 10) 
seq(to = 10, from = 1) Arguments specified by name

seq(10, 20, 2) Third argument is increment

seq(10, 20, by = 2) Can mix order and name specifiers

sqrt() #computes the square root of its argument
sqrt(25)  5



Using the Help

• If you know the function name

help(function)  # or, ?function 

example(function) # shows the example from help

• To search for help on a topic

help.search(“topic”) # e.g., help.search(“covariance”) 

# same as ??covariance 

Easier Way

• Mac OS:  use Spotlight toolbar


• Windows: use HTML Help



function name {package}

short description

how to use it

what arguments 
mean

more info

example

this argument has a  default



Combining elements into arrays

x <- c(10,14,35,50)  # concatenate function

1st 2nd 3rd 4th elements of x

Extracting/subsetting element(s) from a vector using [ ]

x[2]    14 
x[2:3]   14 35 
x[c(2,4)] 14 50

length(x) 4   # number of elements in x

• Arrays are regular arrangements of multiple elements

• Must be the same type (e.g., all numbers)

• Vectors are 1D arrays, matrices are 2D arrays.

c() is needed to specify a vector



2D Arrays: Matrices

1  4 

2  5 

3  6

X <- matrix(1:6, nrow=3, ncol=2)

X[1,2] element in 1st row, 2nd column

X[1, ] whole 1st row of X
X[ ,2] whole 2nd column of X

nrow(X)   3   # number of rows
ncol(X)   2   # number of columns
dim(X)    3 2   # dimension = c(nrow, ncol)

Some useful functions

X <- matrix(1:6, nrow=3, ncol=2)
X <- array(1:6, dim=c(3,2))  # same result



Operations on Arrays

• Many operations and functions can be 
applied to numbers, vectors and matrices.


• Operations are usually done element-wise

x <- 1:4   1  2  3  4
x+5          6  7  8  9
sqrt(x) 1  1.41  1.73  2



Action Example

Combine elements into 
an array

c(1,2,10,22)

Make a matrix matrix(1:4, nrow=2, ncol=2) 
array(1:4, dim=c(2,2))

Subset a vector y[3]   # 3rd element of vector y

Subset a matrix X[1,4] # 1st row, 4th column 
X[3, ]  # whole 3rd row 
X[ ,4]  # whole 4th column

Exercise 2. Arrays and matrices 

1. Create a matrix, XX, with 3 rows and 4 columns from the 
numbers 1:12.  Take the 3rd row of this matrix, and assign it to 
a new variable, y.  

2. Create a new vector of same size as y, with each element 10 
times the corresponding value in y. 

3. What does the following command give you: dim(XX)[2]?  
Reason it out first, then check your answer.



Lists

w <- list(“yes”, 32, TRUE)  

me <- list(firstname = “Gene”, id=40172)  

• List elements can be accessed by name

me$firstname “Gene”

w[2]   32   # just like a vector  

me[1]  “Gene”  
me[[1]]  “Gene”   # drops names attributes  

me$fir    “Gene”   # can shorten, if unambiguous

• Used to combine different types of information 
into a single object



Dataframes

• Rectangular table of information, not necessarily 
of the same type (numbers, text, etc).


• Usually, this is the form your data will be in when 
you import it

habitat taxon1 taxon2 taxon3

site1 forest 0 20 10

site2 forest 34 3 44

site3 grassland 23 1 112

site4 grassland 0 5 67

Column names

Row names

colnames()

rownames()



• Rows and columns can be accessed by number, like a matrix 
  abund[1,3] 10 

  abund[2, ] # all of 2nd row 

• Columns can be accessed by name, like a list 
  abund$taxon2 # all of 2nd column 

• Use attach() to access variable names directly  
  attach(abund) 

  taxon2  # all of 2nd column 

  detach(abund) # undoes the attach()

abund =

habitat taxon1 taxon2 taxon3

site1 forest 0 20 10

site2 forest 34 3 44

site3 grassland 23 1 112

site4 grassland 0 5 67



• Some datasets are built-in to R for purposes of 
illustration. 

• They can be accessed using the data() function, which 
makes the objects available in the workspace.

Exercise 3. Dataframes 

1. Make the dataset mtcars available by typing data(mtcars).  This 
dataset summarizes information about models of cars in 1973.  Take a 
look a the data by typing mtcars.  Note that row names are the car 
models and the columns are attributes of the car models (a description of 
what the variables mean can be found by typing ?mtcars).   

2. How many rows and columns are there in this dataset? 

3. Use the functions mean() and median() to calculate the mean and 
median of fuel efficiency (mpg) and car weights (wt, in thousands of 
pounds). 

4. How would you save to a different variable the following subsets of this 
dataframe: (a) columns 1 and 2; (b) columns 1 and 4; (c) the first ten 
rows; (d) the first ten rows and the first three columns.  

5. Make a new vector called RelPower which is equal to the horsepower of 
a car (hp), divided by its weight (wt).



Testing Relationships

Greater than, less than >, <

Greater or equal to, less than or equal to >=, <=

Equal, not equal ==, !=

AND, OR &, |

x <- 4

x > 10 FALSE

x <- c(4,8,30,52)

x > 10 FALSE FALSE TRUE TRUE

x > 10 & x < 50 FALSE FALSE TRUE FALSE

x < 50 TRUE  TRUE  TRUE FALSE



Subsetting vectors

2. Using logical (T/F) vectors

1. Choose by their indices

x <- c(4,8,30,52)

x[c(3,4)] 30 52

FALSE FALSE TRUE TRUE

30 52x[c(FALSE,FALSE,TRUE,TRUE)]

x > 10

x[x > 10] 30 52

What if we want only those 
x greater than 10?

x[c(4,3)] 52 30  # order is respected



Subsetting vectors

3. Using the elements’ names
x<- 1:4
names(x)<- c(‘a’, ‘b’, ‘c’, ‘d’)  # letters[1:4]
x   

x[c(‘b’, ‘c’)] 2  3  # prints with names above

a b c d 
1 2 3 4 

# prints with names above



Exercise 4. Subsetting 

1. Continuing with the mtcars dataset, compute separately the 
mean fuel efficency (mpg) of big cars (>3,000 pounds), and 
small cars (<3,000 pounds). Note that wt is in units of 
thousands of pounds. 

2. Extract a vector of horsepower (hp) values for cars that are 
both small (wt<3) and fuel-efficient (mpg>=25). 

3. Create a logical vector called muscle that is TRUE when a car 
has high horsepower (hp>200).  The function rownames() 
returns the row names for a matrix or data table.  Use this 
function, along with your muscle vector, to return the model 
names of the powerful cars.

Greater than, less than >, <

Greater or equal to,  
less than or equal to

>=, <=

Equal, not equal ==, !=

AND, OR &, |  (&&, ||)

Subset by indices 
Subset by logical

x[c(1,4)] 
x[x > 10]



Graphing

• Powerful graphing 
capabilities


• Can be saved as vector 
graphics (PDF, postscript)


• Can add to a plot, but can’t 
edit what’s already there (not 
clickable)

MDS ordination of 
1973 Car data 
dot size ∝ mpg

0th rule of data analysis  
Plot your data!  (J. Sepkoski)



Making Graphs

Generate some fake data
x <- rnorm(n=20,mean=0,sd=1)

y <- rnorm(n=20,mean=100,sd=10)

# random normal numbers 
# same as rnorm(20,0,1) 
# same as rnorm(20)

Try some plots…
plot(x,y) 
plot(x,y, pch=2) 
plot(x,y, pch=3, col=“red”)

plot(x) 
plot(x, type=“l”) 
plot(x, type=“b”)



hist()    pie() 
barplot() contour() 
boxplot()

Common arguments to graphing functions

Things you can add to existing plots
title()  legend()  
abline() arrows() 
points() segments() 
text()  rect() 
polygon()  symbols() 

col Color col = “red”, col = 2

cex Character size cex = 2   # twice as big

pch Plotting symbol pch = 5   # diamonds

lty Line type lty = 2   # dashed

log Log-scale axes log = “x”, log = “xy”

Other common graphing functions



More about colors
colors() # gives list of 657 color names 

code to produce R color chart from: http://www.biecek.pl/R/R.pdf and http://bc.bojanorama.pl/2013/04/r-color-reference-sheet  
  

Page 4, Melanie Frazier 

See R color cheat sheet



More about colors

rgb(red, green, blue, alpha) # specify color by RGB components 

Colors and RGB

col2rgb(“pink”)

Color Palettes
palette() 

example(rainbow)

# tells you what color is 1, 2, etc.
# can also use to set these values

# sets color ranges
# see also colorRamp()

See R color cheat sheet



Alternative paradigm: package ggplot2 of the ‘tidyverse’



locator() Gives x,y coordinates of clicked location

identify()
Identifies data point nearest to click
 identify(x,y) # returns index of clicked points                 
              # when done, right-click (Win) or  
               # ESC (Mac)

Interacting with plots

Varying parameters for different points
Many graphing arguments can be a vector of the same 
length as the data.

This feature can be used to designate different plotting 
symbols, colors, etc. for different groups.

data(mtcars) 
plot(mtcars$mpg, mtcars$wt, col = mtcars$gear) 
legend("topright", legend = 3:5, col = 3:5, pch =1)



Exercise 5. Graphing 

1. Attach the mtcars dataset, if necessary. 

2. Plot horsepower (hp) as a function of fuel efficiency (mpg).  Try varying the 
plotting symbol, symbol color, and symbol size.  

3. To figure out what numbers for pch correspond to which plotting symbols, try 
this: plot(1:25, pch=1:25).  Do it again, but make the symbols larger 
(cex = 2) so that you can more clearly see them, and use a background 
color (bg = ’red’) because some of the symbols are filled. 

4. Repeat the plot for question 2, but now use different colors for manual (am = 
1) versus automatic transmissions (am = 0). 

5. Try this: plot(mpg, hp, type=’n’).  The type=’n’ argument says to 
set up the axes, but not to plot the data. Try the following: text(mpg, hp, 
cyl).  This tactic can be useful for controlling precisely what is plotted. 

6. Plot qsec (the time the car takes to complete 1/4 mile) as a function of mpg.  
Use identify() to figure out: (a) which car is the really slow one at the 
top middle of the plot, and (b) which are the two cars with terrible fuel 
efficiency on the left edge of the plot.  

7. The function identify() takes an optional argument called labels which 
can be used to label points on a graph.  Identify a few points, using the 
argument labels=rownames(mtcars).  Note that the label is placed to 
whatever side of the point that you click.



Statistical tests

 Some commonly used statistical tests

 Most return several pieces of information as a list

 w <- t.test(x,y) 

 w$p.value    # extracts p-value from test 

 str(w)     # compactly shows structure of w

 Generally, statistical tests are performed using built-in functions

 x <- rnorm(20, mean = 10, sd = 1) 

 y <- rnorm(20, mean = 11, sd = 1) 

 t.test(x,y)

t.test()    wilcox.test() # same as Mann-Whitney U 

cor.test() ks.test()       # Kolmogorov-Smirnov 
var.test() fisher.test() # Fisher’s exact test 

prop.test()    # Test a specified proportion



Exercise 6.   Additional exercises 

1. Call up the help for seq().  Look at the different ways of specifying the arguments.  Based on this, 
generate (a) a sequence from 0 to 20, in steps of 5, and (b) a sequence from 0 to 200 that consists of 30 
numbers. 

2. Create a variable x <- rnorm(20,50,4). Create a new variable, xn, which is a normalized version of x 
(i.e., it has a mean of 0, and a standard deviation of 1) by first subtracting its mean and then dividing by its 
standard deviation (search the help to find the name of the function that computes standard deviations).  
Compare xn to scale(x, center=TRUE, scale=TRUE). Mean-centering and normalizing are 
common procedures  in multivariate analyses. 

3. Type the following: library(MASS).  This allows access to a package called MASS (we’ll cover packages 
later).  In this package is a dataset called Animals.  Access it using the data() function, and then 
attach it.  This data set consists of body mass (body) and brain mass (brain) for a set of animals.  How 
many rows and columns are in this dataset?   

4. Plot brain as a function of body.  Because the data vary by many orders of magnitude, log scales would 
help.  Plot the data again, this time scaling both axes logarithmically with the argument log=“xy”.  Use 
the function title() to add an informative title to the top of the plot (check its help information, if 
necessary, but you can probably guess its usage). 

5. Use the identify() function to figure out which taxa correspond to the three outliers with large bodies 
and relatively small brains.  One way to to this: assign the results of the identify() function to a variable 
called dumb, and subset rows of Animals with dumb.  For kicks, now try: plot(body[-dumb], 
brain[-dumb], log=“xy”).  This illustrates yet another way of subsetting data--can you figure out 
how this works?



Data Manipulation
Sorting

 x <- c(3,1,3,10) 
 sort(x)   # sorts vector (does not replace x) 
 order(x)  # gives ranks  
 rank(x)   # gives ranks (averages ties) 

Selecting

 subset(data)  # subsets cases/variables of a dataframe 
 which(tf)     # gives indices for which elements are TRUE 
 which(mpg<15)   # indices of gas guzzlers  

Combining

 rbind()  # combines rows of vector/matrix 
 cbind()  # combines columns of vector/matrix 
 merge(d1, d2)  # dataframe join (like databases)



Data Manipulation

Tabulating

 table(f1)      # counts per unique value of f1 
 table(f1, f2)   # cross tabulation

  
data(mtcars)      # car data again 
attach(mtcars) 
table(cyl) 
table(cyl, am)  # tabulate number cylinders vs. 
     # transmission type (am=1 is auto)

> table(cyl, am) 
   am 

cyl  0  1 
  4  3  8 
  6  4  3 
  8 12  2



Vector & Matrix Operations
Addition     element-wise,  A & B same shape


Scalar Multiplication 


Matrix Multiplication

x + y =
�
11
12

⇥

G =
�
1.0 0.8
0.8 1.0

⇥
� =

�
1
0

⇥

x =
�
1
2

⇥
y =

�
10
10

⇥

G =
�
1.0 0.8
0.8 1.0

⇥
2G =

�
2.0 1.6
1.6 2.0

⇥

G� =
�
1.0
0.8

⇥

x + y

2*G

G %*% beta
NOT: G*beta



Vector & Matrix Operations
Transpose     swap rows and columns


Inverse     AA-1 = A-1A = I


Variance-Covariance Matrix


A =
�
a b
c d

⇥
AT =

�
a c
b d

⇥

I =
�
1 0
0 1

⇥

A =
�
1 2
3 4

⇥
A�1 =

�
�2.0 1.0
1.5 �0.5

⇥

S =
�

V ar(x) Cov(x, y)
Cov(x, y) V ar(y)

⇥

t(A)

solve(A)

cov(X)



Exercise 7.   Data Manipulation, Vectors & Matrices 

1. Load and attach the data mtcars again if needed.  Save a subset of this dataframe to a 
new variable, car.sub.  Include in this only cars with eight cylinders and the columns 
mpg, hp, qsec. Now, create the covariance matrix for this reduced dataset.  
Covariances are more interpretable when they are scaled as correlation coefficients, so use 
the cor() function to create a correlation matrix as well.  What does this tell you about the 
variables? 

2. For looking at correlations among variables, pairs() is a useful plotting function.  Try 
pairs(car.sub). 

3. Create a new dataset, x<- rnorm(30).  Create a second variable, y, as x + 
rnorm(30,mean=0, sd=0.1).  Make a scatterplot of x versus y.  Does the result make 
sense?  Test, using the function cor.test() if the two are significantly correlated.  Now, 
compute cor.test(rank(x), rank(y)).  This also called the Spearman rank 
correlation coefficient.



If / else statements

x <- 4 

if (x == 4)  print(“Oh”)   “Oh”

if (x == 3)  print(“Oh”)   # Nothing happens

if (x == 3)  print(“Oh”) else print(“Hey”)   “Hey”

Commands can be executed depending on some 
condition being TRUE, using if() and else 

Multiple commands within a for() or if() statement 
need to grouped with curly braces {}.

if (x==4){ 
  print (‘Wow, x is not equal to 5!’) 
print (‘Gee, x is not equal to 3, either!’) 
}



Writing Functions

• There are many functions built-in to R

• Sometimes, need to do something for 

which no function exists

• For example: people who wrote "vegan" 

wanted to rarefy and compute diversity 
metrics


• If it is a general enough task, it can be 
useful to write your own function



A totally unnecessary function…

times5 <- function(x)  
 { 

   result <- x*5 

   return (result) 

 }

function

name argument

result gets 
returned as the 
function output

Once defined, it can be used 
just like built-in functions

    times5(10) 50

The function to make 
functions is called 
function()



A more useful function: RMA

• Ordinary Least-squares 
regression assumes all 
error is in y-variable


• Often, x-variable has 
error too


• Reduced Major Axis 
draws a line that allows 
for error in both x and y

RMA
LS

€ 

b1 = ±sy sx

€ 

b0 = y − b1x 
slope


intercept



Sourcing R scripts

• We have been entering commands, one at a 
time, at the interactive R prompt


• We can also write commands in a text file, 
and then tell R to do all of them 
consecutively


• The text file of commands = “script”


Mac Win
Open Script File > Open Document File > Open Script

Source Script File > Source File File > Source R Code



Sourcing R scripts

Example script file:  sample.R

 

One difference: expressions not printed by default

Side note: syntax highlighting is really nice!

Win Users:  Rstudio (Mac, too)



Script style
Rule Do Do Not
Variable names concise 
& meaningful

ceph_len 
cephLen

x 
cephalon_length

Do not overwrite existing 
variables/functions

c <- 10 
t <- 10 
F <- TRUE

Put spaces around most 
operators except for : , 

x <- 1:10 
a < 40 
x <- Y[1,3] 
x <- Y[ ,3] 

x<-1:10 
a<40 
x <- Y[,3]

Can use spaces for 
alignment

total <- a + b 
mn    <- c + d

Add comments for why, 
not what

# total has within- and 
between group parts

# add a and b

Use commented spacer 
lines

############ 
#----------# 
#==========#

Line length <= 80 
characters; indent with 
two spaces From Wickham (2015)



Exercise 8.   Conditionals, and Functions 
1. Write a function to compute a Reduced Major Axis.  Have it accept as 

arguments two vectors, x and y, and have it return a vector of two 
elements: the intercept and slope of the RMA.  Here are a few hints.  
Look at the earlier slide, and figure out all the quantities you need to know 
to compute the intercept and slope.  You’ll need the sign() function in 
order to know if the slope is positive or negative (check its help entry). 

2. Create a fake data set as follows: x<- rnorm(100, 0, 1) and y<- 
x+rnorm(100,0,0.8).  Make a scatterplot of x and y.  Use your RMA 
function on these data, saving the result to res.rma.  Now type 
abline(res.rma), and look again at your plot. Note: 
abline(res.rma) will only work if you have your RMA function return a 
vector of c(intercept, slope) as suggested in #1. 

3. Repeat #2, but with y <- rnorm(100, 0, 1), which will make y 
uncorrelated with x.  Does the resulting RMA slope surprise you? 

4. The function for computing a least-squares regression is lm(), which is 
short for linear model.  Use this res.ls<- lm(y~x).  Don’t worry too 
much about this syntax now because we’ll come back to it later on.  Add 
the least-squares regression as a dashed, blue line: abline(res.ls, 
lty=2, col=’blue’).  The RMA slope should be steeper than the 
least squares slope.



Importing Data (preliminaries)
• Preliminary: change the working directory via menu


• Mac: Misc, Change Working Directory 

• Win:  File, Change dir 

• The data should be a clean rectangular matrix


• Must be plain text (ASCII), usually exported from 
Excel or a database program.


• It is advisable to have the first row be a header with 
names of the variables


• The first column may optionally be row names (labels)


• Example: look at cope.txt (Hunt & Roy 2006, PNAS)



Importing Data

Workhorse function: read.table() 

cope<- read.table(file=“cope.txt”, header=TRUE)

It’s a good idea to look at it to make sure import worked OK 
    cope         # shows whole dataframe 
    cope[1:10,]  # look at first 10 rows of dataframe 
 head(cope)   # head shows top of any R object



Importing Data

Other variants: read.csv(), read.delim(); read.xls() 
from package {gdata} 
     (useful if there are spaces within some fields)

Handy function: file.choose()  # navigate to file 

 cope<- read.table(file=file.choose(), header=T)   

attach(cope)  # we’ll use it for a while 
 



Dataframe cope

               species   age depth mg.temp  n valve.length 

ant-M1 anteropunctatus 19.87  1962    6.31  2          673 

ant-T1 anteropunctatus  5.97  1545    3.75  3          663 

ant-T2 anteropunctatus  1.09  1545    1.65  1          706 

ant-E1         dinglei 37.06  1478    9.73 21          607 

ant-E2         dinglei 34.11  1478    8.46 16          580 

din-T3         dinglei 33.91  2318    8.37  2          623

Column namesRow names

For ostracode genus Poseidonamicus, gives species assignment, age (Ma), 
bathymetric depth (m), paleotemperature (°C), sample size, and body size 

(valve length, in μm) for 106 populations. 



Factors
• Used to represent categorical data; by default, read.table() 

converts columns with characters into factors


• Factors look like strings, but are treated internally as indexes 
(integers) with factor names


species  # example of a factor

• Factors have levels, which are the unique values it takes

  levels(species)  # returns levels 
  nlevels(species)  # returns number of levels

• Factor levels may be ordered (e.g., low, med, high), which is 
important in some analyses (see ?factor and ?ordered)



Type conversion
• Sometimes want to convert one kind of data to 

another, e.g., a factor to character: 
as.character(species)

• Functions: as.xxx(), where xxx = type

as.numeric() as.character() 

as.logical() as.factor()

•  Useful trick using type conversion

• When logical converted to numeric, T⇒1; F⇒0


• Summing a logical vector yields number of TRUE’s

  sum(species == “dinglei”)  # counts number of pop’s 
       # assigned to “dinglei” 



Missing Data
Represented by a special character in R:  NA 

Many functions have an argument na.rm 
• If TRUE, NA’s are removed


•  FALSE is usually default (function returns NA)

•  median(x, na.rm=TRUE)

  read.table(file, na.strings=“NA”) 
na.strings=“-999” # here, missing data are -999

 Useful function: complete.cases(cope) 
 Returns logical vector, T for rows without missing data

 cc<- complete.cases(cope) # see also na.omit() 

  cope.cc<- cope[cc,]    # only rows w/o NA



Exercise 9. Factors, types, and missing data 

1. Plot valve.length versus age in Poseidonamicus using a trick 
involving type conversion to easily give a different plotting symbol 
to each species. 


2. How many of the populations in cope date from before 20 million 
years ago?  Figure this out by applying sum() to a logical vector.

3. Create a new variable, x<- valve.length.  Compute the 
median of x.  Change the first observation of x to be missing data 
by x[1]<- NA.  Compute the median of x now.  How can you 
get the function median to ignore missing data in computing a 
median? 


4. Warning: factors and factor conversions can be tricky! Remember 
that, internally, they are integers, not strings.  Take a look at 
cbind(cope$species, as.character(cope$species) to 
see the difference.



Packages

• R is modular, with functions and other objects 
separated into units called packages


• Some packages are always available: e.g., 
base, stats, graphics


• Others need to be made available using the 
function library(), or via the menus


• Many packages are installed by default, more 
can be downloaded and installed from within 
R.



CRAN Task Views



Exercise 10. Packages, and additional exercise 

1. Figure out how to install and load packages using the menus on your 
operating system.  Practice by installing the the gdata package and 
the packages from the tidyverse: install.packages("tidyverse").


2. Practice some plotting using the cope data.  Plot valve.length 
separately as a function of mg.temp and depth.  Use the 
symbols() function to plot valve.length versus mg.temp, 
plotting circles proportional to depth.  Use the argument inches to 
control to size of the circles (check the help function).  


3. Add the RMA line (using your function) to the cope plot of 
valve.length versus mg.temp.  Add it to the plot as a blue line.  
Compute the least-squares slope and add it as a dotted (lty=3), red 
line.



Statistical Models

• R has special syntax for statistical models, and a lot of 
built-in capabilities


• Models represent (hypothesized) relationships among 
variables, usually one response (y) and one or more 
predictor (x) variables

€ 

y = β0 + β1x
example


	 Linear regression:

intercept slope



Linear Models

• Response variable is a linear function of predictor 
variable(s)


• Very common, includes regression & ANOVA

Continuous x 
(numeric)

Categorical x 
(factors)

Model Notation:     y ~ x1 + x2 - 1

separator

Model
inclusion

Model
exclusion

intercept



The function lm()

• Evaluates linear models for best fitting 
coefficients


• Returns a list with lots of information

• Example: linear regression

plot(mg.temp, valve.length) 
w <- lm(valve.length ~ mg.temp, data = cope)

w  # gives only coefficients & formula

summary(w) # gives much more info: stats, P, etc.

abline(w) # adds regression line to plot

str(w) # gives terse view of all elements of w



> summary(w)  ## summary of linear regression 

Call: 
lm(formula = valve.length ~ mg.temp) 

Residuals: 
     Min       1Q   Median       3Q      Max  
-115.369  -44.431    8.367   45.486  104.234  

Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  764.639     10.125  75.522  < 2e-16 *** 
mg.temp      -19.530      2.466  -7.918 2.77e-12 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Residual standard error: 57.77 on 104 degrees of freedom 
Multiple R-Squared: 0.3761, Adjusted R-squared: 0.3701  
F-statistic:  62.7 on 1 and 104 DF,  p-value: 2.774e-12 

Some information-extracting functions

resid(w)  coef(w)  fitted(w) confint()



ANOVA

Make fake groupings

  gg <- rep(c(“a”, “b”), length.out=nrow(cope)) 

  ggf<- factor(gg)   # convert from character to factor

Compute linear model

  w.a <- lm(valve.length ~ ggf, data=cope) 

  summary(w.a)   # coefficients and p-values 

  anova(w.a)     # standard ANOVA table (SSQ, MSQ, F-test)

Compute linear model

  w.sp <- lm(valve.length ~ species, data=cope) 

  summary(w.sp)   # coefficients and p-values 

  anova(w.sp)     # standard ANOVA table (SSQ, MSQ, F-test)



Exercise 11. Statistical models 
1. Model notation is sometimes used in functions that do not directly involve 

statistical models.  To see two examples, try the following commands: 
plot(valve.length ~ mg.temp), and plot(valve.length ~ species).   

2. Look at the plot of valve.length as a function of mg.temp.  Use abline() to 
add the line corresponding to the linear regression (w) to the plot.  Does the 
linear regression seem adequate?  In fact, the residuals are nonrandomly 
distributed.  One common regression diagnostic is to plot the residuals versus 
the fitted values.  Try this using the fitted() and resid() functions; put the 
fitted values on the horizontal axis.  Use abline(h=0, lty=3) to put a dotted 
horizontal line at zero.  From left to right, notice that the residuals are mostly 
positive, then mostly negative, then mostly positive. 

3. Repeat the symbol plot from exercise 10.3:  symbols(mg.temp, 
valve.length, circles=depth, inches=0.3).  What does this show?  Add 
the regression line for w again.  This plot seems to suggest that depth is having 
some effect on body size (note the size of the points above and below the line). 

4. To incorporate depth, perform a multiple regression in which mg.temp and 
depth are jointly used to predict valve.length; save the results to a variable 
called w.td. Is mg.temp still significant?  How about depth?  Redo the 
diagnostic plot looking at fitted and residual values.  Does adding the extra 
variable result in better-looking residuals?  Note that, in terms of interpretation, 
both of these variables reflect temperature: mg.temp is a proxy for global deep-
water temperature, and, at any point in time, deeper waters are colder than 
shallower waters.   

5. FYI: try plot(w), which shows several useful diagnostic plots for regressions.
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Looping Basics
Situation

You have a set of objects (sites, species, measurements, 
etc.) and you want to do some computation to each one 

The function that makes loops is for()

for (i in 1:5){ 

   print(i) 

}

iterator vector over which i iterates

Sets up multiple passes, one for 
each element of the vector.


Here, i is 1 on the first pass, 2 
on the second pass, and so on.



Looping Basics
Usually, you want to save information with each pass, and 
so you need to set up an array to store that information

femur <- c(10, 8, 14, 22, 32) # 5 femora lengths

Here, looping is not necessary   log.femur <- log(femur)

for (i in 1:5){ 

   log.femur[i] <- log(femur[i]) 

}

log.femur <- array(dim=5)   # set up new variable1
2

3
1  set up variable to save computations


2  figure out indices to loop over

3  do calculations; save into results array



Apply-family of functions

• Set of functions that allow one to perform 
operations over chunks/subsets of the data


• Avoids loops (can be much faster)

• Different functions for different data structures

apply(X, MARGIN, FUN, ...)

matrix or

dataframe

1 = rows

2 = cols

function 

to apply

other arguments

to FUN



X <- matrix(1:12, nrow = 3, ncol = 4)

apply(X, MARGIN, FUN)

     [,1] [,2] [,3] [,4] 
[1,]    1    4    7   10 
[2,]    2    5    8   11 
[3,]    3    6    9   12

apply(X, MARGIN = 2, FUN = sum) apply(X, MARGIN = 1, FUN = sum)

     [,1] [,2] [,3] [,4] 
[1,]    1    4    7   10 
[2,]    2    5    8   11 
[3,]    3    6    9   12

 6 15 24 33 22 26 30

# shortcuts 

colSums(X) 

colMeans(X) 

rowSums(X) 

rowMeans(X)



Other versions
lapply() and sapply() operate over lists - 
repeatedly call FUN to each element of a list

## make a list of t-tests 

tl <- list() 

for(i in 1:100){ 

  tl[[i]] <- t.test(rnorm(100), rnorm(100)) 

}

## look at str(tl[[1]]) to see components 

ff <- function(x) x$p.value   # extract p.value element 

pvl <- lapply(tl, ff) 

pvs <- sapply(tl, ff)    # same, but converts to vector

pvs <- sapply(tl, “[[“, “p.value”)    # another way to do extraction



Other versions

version notes
sapply(X, FUN) like lapply() but simplifies output to 

vector or matrix
tapply(X, INDEX, FUN) applies FUN over subgroups defined by 

factor INDEX 

mapply(FUN, …) multivariate version - accepts more than 
one list or vector as arguments, drawn 
from …

mclapply(X, FUN) parallel (multicore) version of lapply(); in 
package {parallel}. [not Windows, see 
parLapply() instead.]



Exercise 12. Looping 
1. Use a loop to go through all the species in the Cope dataset and 

compute the mean valve.length for each species. Save these mean valve 
lengths to a vector.  

2. Question #1 can be done much more simply using tapply(). Do so, 
referring to the help page as needed.   

3. Go back to mtcars.  Compute average mpg separately for each 4, 6 and 
8 cylinder cars.  

4. Apply and similar functions are sometimes -- but not always -- faster than 
loops. Test this with a large matrix, M <- matrix(rnorm(1e6), nrow = 
1e2, ncol = 1e4).  There is a helper function, system.time(expr), 
that tells you how much time it takes R to execute the R command expr. 
Use this to time how long it takes to compute column sums using apply, 
and then using a for loop. You’ll want to write a new function to do the 
column sums using a loop so that it can be used as the argument to 
system.time(). 



Classes in R
• R is sometimes referred to as an ‘object-oriented’ 

language

• Everything you create in R is an object: functions, 

variables, etc. 

• Classes are categories of objects. Many standard 

ones: numbers, character strings, arrays, 
dataframes, lists. 


• The class() function tells you an object’s class.

class(1.4)   # “numeric” 

class(cope)  # “dataframe” 

class(TRUE)  # “logical”



Classes in R
• There are also more specialized classes

x <- rnorm(50); y <- rnorm(50) 

w <- lm(y ~ x) 

class(w)  # “lm”

• Some functions are generic, meaning they call 
specialized versions depending on the class of the 
argument


• Common generics include: plot(), print(), 
summary(); specialized versions are of the form 
function.class()

plot.lm() 

print.lm()



Exercise answers follow



Exercise Answers 
Ex 1: (1) x<- 46;  xx<- (x/2)^4  (2) y<- TRUE; y<- “Cambrian” 
Ex 2: (1) XX<- matrix(1:12, nrow=3, ncol=4); y<- XX[3,]  (2) y2<- 10*y  (3) number of columns of XX (=4) 

Ex 3: (2) dim(mtcars)  (3) mean(mtcars$mpg); median(mtcars$mpg); (4) mtcars[,1:2]; mtcars[,c(1,4)]; 
mtcars[1:10,]; mtcars[1:10, 1:3]  (5) RelPower<- mtcars$hp/mtcars$wt 

Ex 4: (1) attach(mtcars); mean(mpg[wt>3]); mean(mpg[wt<3])  (2) hp[wt<3 & mpg>=25]  (3) muscle<- hp>200; rn<- 
rownames(mtcars); rn[muscle] 

Ex 5: (1) attach(mtcars)  (2) plot(mpg, hp, pch=3, col=”red”) (4) pcol=rep(“red”, times=nrow(mtcars)); 
pcol[am == 1] <- “blue”; plot(mpg, hp, pch=21, bg=pcol, cex=2) OR: plot(mpg, hp, pch=21, bg=am+1, cex=2)  (6) 
plot(mpg, qsec); identify(mpg, qsec)  (7) identify(mpg, qsec, labels=rownames(mtcars)) 

Ex 6: (1) seq(0,20,5); seq(0,200, length.out=30)  (2) xn<- (x-mean(x))/sd(x) (3) 5% of the time  (3) 
dim(Animals)  (4) attach(Animals); plot(body, brain, log=”xy”); title(“Brain size allometry”)  (5) dumb<- 
identify(body, brain) 

Ex 7: (1) car.sub<- mtcars[mtcars$cyl==8, c(‘mpg’, ‘hp’, ‘qsec’)]; SS<- cov(car.sub); RR<- cor(car.sub) 

Ex 8: See next page. 

Ex 9: (1) plot(age, valve.length, pch=as.numeric(species)); legend(x="topright", pch=1:19, levels(species), 
cex=0.6)  (2) sum(cope$age>20)  (3) median(x, na.rm=TRUE) 

Ex 10: (2) symbols(cope$mg.temp, cope$valve.length, circles=cope$depth, inches=0.3)                         

Ex 11: (2) plot(fitted(w), resid(w))  (4) w.td<- lm(valve.length ~ mg.temp + depth) 

Ex 12: (1) See next page. (2) tapply(valve.length, INDEX = species, FUN = mean)  (3) tapply(mtcars$mpg, 
INDEX=mtcars$cyl, FUN=sum)  (4) See next page.



 # Reduced major axis (Ex. 8-1) 

RMA<- function(x,y)
{
 # compute needed summary statistics
 mx <- mean(x)
 my <- mean(y)
 sx <- sd(x)
 sy <- sd(y)
 rxy <- cor(x,y)
 
 # compute slope and intercept
 b1 <- sy / sx * sign(rxy)  
 b0 <- my - b1 * mx

 # combine slope and intercept into a vector
 result<- c(b0,b1)
 return(result) # abline(result) will work!
}

 # Looping example (Ex. 12-1)
 lsp<- levels(species)   # all species names
 nsp<- nlevels(species)   # number of species
 mn.len<- array(dim=nsp)  # vector to store mean lengths by species
 names(mn.len)<- lsp   # give the vector elements names for the species
 for(i in 1:nsp){
 sub <- species == lsp[i]
 mn.len[i] <- mean(valve.length[sub])
 }

 ## speed of loops versus apply (Ex. 12-4)
 M <- matrix(rnorm(1e6), nrow=1e2, ncol=1e4)
 
 system.time(apply(M, 2, sum)) # 0.033 sec on my machine
 system.time(colSums(M)) # much faster! 0.001 sec
 
 # now, using loops
 loopColSum <- function(M){
 nc <- ncol(M)
 cm <- array(dim=nc)   # vector to store colsums
 for(i in 1:nc) cm[i]<- sum(M[,i]) # loop thru columns, get each sum
 
 return(cm)
 }

system.time(loopColSum(M)) # faster than apply, 0.02 sec on my machine


