R Bootcamp

Gene Hunt

NMNH, Smithsonian Institution
Analytical Paleobiology Workshop
Gainesuville, FL July 2018

Purpose

« Get comfortable with R
* R commands, syntax, rules

* R programming

Background on R

Descended from S (Bell Labs); both S and R are used
heavily by statisticians

Open source, maintained by a volunteer committee
Practical Benefits:
- Free, available for all major OS

Scientific Benefits:
- High level (powerful functions built-in)
- Powerful statistical, graphics capabilities

- Extendable (user contributed packages)

Type | and type |l errors - Wikipedia

Gett

ing additional help

i mirrors.sorengard.com X

Power (statistics) - Wikipedia The Comprehensive R Archive Network

The Comprehensive R Archive Network

Download and Install R

Precompiled binary distributions of the base system and contributed packages, Windows and Mac users most
likely want one of these versions of R:

CRAN e Download R for Linux

Mirrors e Download R for (Mac) OS X

What's new? e Download R for Windows

Task Views

Search R is part of many Linux distributions, you should check with your Linux package management system in
addition to the link above.

About R Source Code for all Platforms

R Homepage

The R Journal Windows and Mac users most likely want to download the precompiled binaries listed in the upper box, not
the source code. The sources have to be compiled before you can use them. If you do not know what this

Software means, you probably do not want to do it!

R Sources

R Binaries o The latest release (2018-07-02, Feather Spray) R-3.5.1.tar.gz, read what's new in the latest version.

Packages

Other e Sources of R alpha and beta releases (daily snapshots, created only in time periods before a planned

release).

o Daily snapshots of current patched and development versions are available here. Please read about new
features and bug fixes before filing corresponding feature requests or bug reports.

Contributed
e Source code of older versions of R is available here.
e Contributed extension packages
Questions About R
o If you have questions about R like how to download and install the software, or what the license terms
are, please read our answers to frequently asked questions before you send an email.
What are R and CRAN?
R is ‘GNU §’, a freely available language and environment for statistical computing and graphics which provides a wide variety of
statistical and graphical techniques: linear and nonlinear modelling, statistical tests, time series analysis, classification, clustering, etc.
Please consult the R project homepage for further information.
CRAN is a network of ftp and web servers around the world that store identical, up-to-date, versions of code and documentation for R.
Please use the CRAN mirror nearest to you to minimize network load.
Submitting to CRAN
“contributed
n
3 . i not very useful; go to “contribute

documentation” > Maindonald

Ways to use R

As a statistics package
(ANOVA, nonparametrics, °
ordinations)

As a programming
language (resampling,
morphometrics, likelihood
approaches)

Mean Length (u)
1 My bins

Phylogenetic comparative

methods

550
|

For publication graphics

Mg/Ca Temperature (°C)

Ankylosauria

o O ® @) — O
j) o Q o O
@
Hadrosauridae O O
@)
Ceratopsidae
OX©,

@ | _

E Q)
s
T =
3 o Q
3 Ceratopsia -2 g
=

Ornithopoda

Stegosauria

o 70 mm C

2 wom. ﬂQ l
o |

FIGURE 5.—Phylogeny of ornithischian dinosaurs from the composite tree of Carrano (2006) modified according to other studies (Ford and
Kirkland, 2001; Weishampel et al., 2003; Novas et al., 2004; Vickaryous et al., 2004; Averianov et al., 2006; Ryan, 2007; Carpenter et al., 2008;
Maidment et al., 2008; You et al., 2008; Arbour et al., 2009; Boyd et al., 2009; Dalla Vecchia, 2009; Sues and Averianov, 2009; Butler et al., 2010),
with branch lengths scaled to geological time. Taxon names are omitted for clarity, although a few of the larger named clades are labeled below the
appropriate node. Symbol sizes are scaled to log femur length. Time axis extends backwards from the youngest terminal taxa, in millions of years.

150

Percent best supported

Density
0.4

10 20 30 40 50

0

0.8

0.0

DN\

[i

Stasis Random Directional Punctuat. Mode Shift
Walk
O Empirical data
O Temp. tracking simulation
Poseidonamicus calibration
@ Temp. tracking simulation
Neotoma calibration
I I I I I
1 2 3 4 5
Magnitude of

Evolutionary Variation

The R Session

SRmEGEQH 1L

R version 3.5.0 (2018-04-23) -- "Joy in Playing"
Copyright () 2018 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwinl5.6.0 (64-bit)

R 1s free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale
R 1s a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
[R.app GUI 1.70 (7521) x86_64-apple-darwinl5.6.0]

>

The Interactive R prompt

> 2 2
> 2 + 2 4

Saving information as variables

X <- 8 # assigns variable, x, a value of 8

L)

Assignment operator

x ¥ 5 40

y <- “tooth”

Variable assignment

1. Can also use

and - > as assignment operator

y <- 18
y = 18
18 -> vy

2. Names Iin R are case-sensitive

tri <- 18

Tri <- 25 # these are different variables

Types of variables

Mode Example
Numeric 5, 2.34
Character “Ostracoda”, ‘b’

Logical TRUE, FALSE, T, F

Factor {for categorical data}
Complex 2 + 31

Action Symbol Example

Arithmetic + - *x /A 2 + 2
5 4 + 1 "2
5 * (4 + 1)"M12

Assignment <- X <- 2 + 3

* R uses standard rules for order of operations: *
before */ before +-

 To group operations, or if unsure of the rules, use
parentheses

Exercise 1. Variable Assignment

1. Create a variable, x, and assign it a value of 46. Create a new
variable, xx, that is equal to the one-half of x, raised to the 4th
power.

2. Create a variable, y, and assign it a value of TRUE. Then
assign y a value of “Cambrian”.

Functions

Functions take information (=arguments), do
something with it, and return a result

sqrt() #computes the square root of 1ts argument
sqrt(25) 5

seq() generates regular sequences of numbers

seq(1,5) 12 3 45
1:5 12345 # special shortcut

seq(1,10) Arguments specified by order

seq(from = 1, to = 10)

seq(to = 10, from = 1) Arguments specified by name

seq(le, 20, 2) Third argument is increment

seq(10, 20, by = 2) Can mix order and name specifiers

Using the Help

» |f you know the function name

help(function) # or, ?function

example(function) # shows the example from help

» To search for help on a topic

help.search(“topic™) # e.g., help.search(“covariance”)

same as ?77covariance

®O06 R Console

i

O R X G

Easier Way

W =)
<=

R : Copyright 2005, The R Foundation for Statistical Computing
Version 2.2.0 (2005-10-06 r35749)

* Mac OS: use Spotlight toolbar s s

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

« Windows: use HTML Help

function name {package}

short description

how to use it

what arguments
mean

more info

example

0O R Help
< Print Q
sd {stats} R Documentation
Standard Deviation
Description

This function computes the standard deviation of the values in x. If na.rm is TRUE then missing values are
removed before computation proceeds.

Usage
sd(x, this argument has a default
Arguments

X
a numeric vector or an R object which is coercible to one by as.double(x).

na.rxm

logical. Should missing values be removed?
Details
Like var this uses denominator n - 1.

The standard deviation of a zero-length vector (after removal of NAS if na.rm = TRUE) is not defined and
gives an error. The standard deviation of a length-one vector is NA.

See Also
var for its square, and mad, the most robust alternative.

Examples

sd(1l:2) " 2

[Package srars version 3.3.2 Index]

Combining elements into arrays

* Arrays are regular arrangements of multiple elements
* Must be the same type (e.g., all numbers)
* Vectors are 1D arrays, matrices are 2D arrays.

X <- ¢(10,14,35,50) # concatenate function

TTTT®

1st 2nd 3rd 4th elements of x

length(x) 4 # number of elements 1n X

Extracting/subsetting element(s) from a vector using []

X[2] 14
X[2:3] 14 35
x[c(2,4)] 14 50

Ic() Is needed to specify a vector

2D Arrays: Matrices

X <- matrix(1:6, nrow=3, ncol=2)

4 1 4\
X[1,2] element in 1st row, 2Z2nd column
) 5 X[1,] whole 1st row of X
3 6 X[,2] whole 2nd column of X
_ _/

Some useful functions

nrow(X) 3 # number of rows
ncol(X) 2 # number of columns
dim(X) 32 # dimension = c(nhrow, ncol)

X <- matrix(1:6, nrow=3, ncol=2)
X <- array(1l:6, dim=c(3,2)) # same result

Operations on Arrays

- Many operations and functions can be
applied to numbers, vectors and matrices.

« Operations are usually done element-wise

X <- 1:4 1 2 3 4
X+5 o 7 8 9
sgrt(x) 1 1.41 1.73 2

Action

Example

Combine elementsinto | c(1,2,10,22)

an array

Make a matrix matrix(l:4, nrow=2, ncol=2)
array(l:4, dim=c(2,2))

Subset a vector y[3] # 3rd element of vector y

Subset a matrix X[1,4] # 1st row, 4th column

X[3, 1 # whole 3rd row
X[,4]1 # whole 4th column

Exercise 2. Arrays and matrices

1.

Create a matrix, XX, with 3 rows and 4 columns from the
numbers 1:12. Take the 3rd row of this matrix, and assign it to
a new variable, vy.

Create a new vector of same size as y, with each element 10
times the corresponding value in y.

What does the following command give you: dim (XX) [2]?
Reason it out first, then check your answer.

Lists

* Used to combine different types of information
into a single object

w <- list(“yes”, 32, TRUE)

w[2] 32 # just like a vector

* List elements can be accessed by name

me <- list(firstname = “Gene”, 1d=40172)

me$firstname “Gene”
me$fir “Gene” # can shorten, if unambiguous
me[1] “Gene”

me[[1]] “Gene” # drops names attributes

Dataframes

- Rectangular table of information, not necessarily

of the same type (numbers, text, etc).

» Usually, this is the form your data will be in when
you import it

habitat taxon | taxon?2 taxon3
site forest 0 20 |0
site? forest 34 3 44
site3 grassland 23 I 112
site4 grassland 0 5 67
]
Row names rownames ()

@&m Column names

colnames ()

habitat taxon | taxon?2 taxon3
site forest 0 20 |10
abund =
site? forest 34 3 44
site3 grassland 23 I |12
site4 grassland 0 5 67
* Rows and columns can be accessed by number, like a matrix
abund[1, 3] 10
abund[2,] # all of 2nd row

« Columns can be accessed by name, like a list

abund$taxon2 # all of 2nd column

 Use attach () to access variable names directly

attach(abund)
taxon?2 # all of 2nd column
detach(abund) # undoes the attach()

* Some datasets are built-in to R for purposes of
illustration.

* They can be accessed using the data() function, which
makes the objects available in the workspace.

Exercise 3. Dataframes

1. Make the dataset mtcars available by typing data(mtcars). This
dataset summarizes information about models of cars in 1973. Take a
look a the data by typing mtcars. Note that row names are the car
models and the columns are attributes of the car models (a description of
what the variables mean can be found by typing ?mtcars).

2. How many rows and columns are there in this dataset?

3. Use the functions mean () and median () to calculate the mean and
median of fuel efficiency (mpg) and car weights (wt, in thousands of
pounds).

4. How would you save to a different variable the following subsets of this
dataframe: (a) columns 1 and 2; (b) columns 1 and 4; (c) the first ten
rows; (d) the first ten rows and the first three columns.

5. Make a new vector called Re1Power which is equal to the horsepower of
a car (hp), divided by its weight (wt).

Testing Relationships

Greater than, less than

Greater or equal to, less than or equal to >=

Equal, not equal

AND, OR

<- 4

> 10

FALSE

<- c(4,8,30,52)

> 10
< 50

> 10 & x < 50

FALSE FALSE T
TRUE FALSE

TRUE TRUE

RUE TRUE

FALSE FALSE T

RUE FALSE

Subsetting vectors

x <- c(4,8,30,52)

1. Choose by

x[c(3,4)]
x[c(4,3)]

thelir indices

30 52

What if we want only those
X greater than 107

52 30 # order 1s respected

2. Using logical (T/F) vectors

x [c(FALSE, FALSE, TRUE, TRUE)]

x > 10

x[x > 10]

30 52

FALSE FALSE TRUE TRUE

30 52

Subsetting vectors

3. Using the elements’ names

x<- 1:4

names(x)<- c(‘a’, ‘b’, ‘c’, ‘d’) # letters[1l:4]

X abcd #prints with names above
1234

x[c(C‘b’, ‘c’)] 2 3 # prints with names above

Greater than, less than >, <

Greater or equal to, >= <=

less than or equal to

Equal, not equal ==, I=

AND, OR &, | (&&, |])
Subset by indices Xx[c(1,4)]

Subset by logical X[x > 10]

Exercise 4. Subsetting

1. Continuing with the mtcars dataset, compute separately the
mean fuel efficency (mpg) of big cars (>3,000 pounds), and
small cars (<3,000 pounds). Note that wt is in units of

thousands of pounds.

2. Extract a vector of horsepower (hp) values for cars that are
both small (wt<3) and fuel-efficient (mpg>=25).

3. Create a logical vector called muscle thatis TRUE when a car
has high horsepower (hp>200). The function rownames ()
returns the row names for a matrix or data table. Use this
function, along with your musc1e vector, to return the model

names of the powerful cars.

Graphing

» Powerful graphing

capabilities o ;Toyota O e
- Can be saved as vector N : Qb % 8 ®
graphics (PDF, postscript) 3 . [® S
3.1 @ e
+ Can add to a plot, but can’t . ©
P O
edit what’s already there (not 7 - ©
clickable) ; I —
-4 -2 0 2

MDS Axis 1

MDS ordination of
1973 Car data

dot size o« mpg

Oth rule of data analysis

Plot your data! (J. Sepkoski)

Making Graphs

Generate some fake data

X <- rnorm(n=20,mean=0,sd=1) # random normal numbers
same as rnorm(20,0,1)
same as rnorm(20)

y <- rnorm(n=20,mean=100,sd=10)

Try some plots...

plot (x) plot(x,y)
plot(x, type=“1") plot(x,y, pch=2)
plot(x, type=“Db”) plot(x,y, pch=3, col="red”)

Other common graphing functions

hist () pie()
barplot () contour ()
boxplot ()

Common arguments to graphing functions

col Color col = “red”, col = 2

cex Character size cex 2 # twice as big

5 # diamonds

pch Plotting symbol pch

Lty Line type Lty 2 # dashed

log Log-scale axes |log = “x”, log = “xy”

Things you can add to existing plots

title() legend ()
abline () arrows ()
points() segments ()
text () rect()
polygon () symbols ()

colors ()

chartreuse4
chartreuse2
chartreuse1
chartreuse

cadetblue3
cadetblue2
cadetblue1

burlywooc
burlywood?2
burlywood1
burlywood
brown4

blue4
o] [[=K]

blanchedalmond

black

bisque

bisque2

bisque1
bisque
beige

azure3

azure2

azurei
azure

aquamarineg
aquamarine2
aquamarine1

aquamarine

antiquewhite
antiquewhite2
antiquewhite1
antiquewhite
aliceblue
white

darkslategrey

darkslategray.

darkslategray2

darkslategray1
SERSEICEIEN

darkseagreen
darkseagreen2
darkseagreen1
darkseagreen
darksalmon
darkred

darkorange4

darkgoldenrod2

darkgoldenrod1
darkblue

cyan1
yan

cornsilk3
cornsilk2
cornsilk1
cornsilk

gray
gray26
gray25
gray24
gray23
gray22
gray21
gray20
gray19
gray18
gray17
gray16
gray15
gray14
gray13
gray12
gray11
gray10
gray9
gray8
gray7
gray6
gray5
gray4
gray3
gray2
gray1

raO

g .
ghostwhite
gainsboro
orestgreen

firebrick4

More about colors

gives list of 657 color names

ray87
8ra¥86
gray85
gray84

grey27
grey26
grey25
grey24
grey23
grey22
grey21
grey20
grey19
grey18
grey17
grey16
grey15
grey14
grey13
grey12
grey11
grey10
grey9
grey8
grey7
grey6
grey5
grey4
grey3
grey2
grey1

grey0
grey
green4

green3

ray100
gg rgy99
gray98
gray97
gray96

rey99
gre¥98

mistyrose1

mistyrose

mintcream
midnightblue

lightpink1
lI_lng:tpmk
i re

li %t gree}/n

pink

pink1
igh grag pink

lightgoldenrodyellg

ightgoldenroc

IightgoldenrodZ

lightgoldenrod1
lightgoldenrod

peachpuf
peachpuff2
peachpuff1
peachpuff
papayawhip
ightcyan
Iightc¥an2

lightcyan1

lightcyan

lightcor

ightblue paleturquoise

lightblue2 et N9 paleturquoise2

Illghr}%%m mediumag uamann@alftijrquoysm
ue

palegreen
palegreen2
palegreeni
palegreen
oldenrod

lemonchiffon3
lemonchiffon2
lemonchiffon1
lemonchiffon
lawngreen

lavenderblush3
lavenderblush2
lavenderblush1
lavenderblush
lavender

khaki3

khaki2

khaki1
khaki

ivory

ivory2

ivory1
ivor

linen i
orangered4

ightyeliow
lightyellow2
lightyellow1
lightyellow

ightsteelblue
lightsteelblue2 =~
lightsteelblue1
lightsteelblue

orange

olivedrab3

olivedrab2

| olivedrab1
Ightskyblue.
lightskyblue2
lightskyblue1
lightskyblue

oldlace
navyblue
navy

navajowhite
navajowhite2
navajowhite1
navajowhite
moccasin

ig salmon2
lightsalmon1

oneydew.
lightsalmon

honeydew?2
honeydew1
honeydew

grey100 mistyrose2

slategray1

yellowgreen

yellow.

yellow2

yellow1
kyblue3 yellow
skyblue whitesmoke
skyblue1
skyblue wheat3
wheat2
wheat1
wheat

seashell3

seashell2

seashell1
seashell

seagreen?
seagreen1

sanayorown

thistle3
thistle2
thistle1
thistle

tan.

) tan1
rosybrownd tan
rosybrown2
rosybrown1

springgreen4

See R color cheat sheet

More about colors

Colors and RGB

rgb(red, green, blue, alpha) # specify color by RGB components

col2rgb(“pink™)

Color Palettes

palette() # tells you what color 1s 1, 2, etc.
can also use to set these values

example(rainbow) # sets color ranges
see also colorRamp()

See R color cheat sheet

Alternative paradigm: package ggplot2 of the ‘tidyverse’

M1 M2 M3 WT

g

o)

ho
=
1=
o ~ Response.type
3 é’ ResponseA
- 8)
o ResponseB
o
&
o

O

&

=3

)

Concentration

Interacting with plots

locator () Gives X,y coordinates of clicked location

|dentifies data point nearest to click

1’dent1’fy() identify(x,y) # returns index of clicked points

when done, right-click (Win) or
ESC (Mac)

Varying parameters for different points

Many graphing arguments can be a vector of the same
length as the data.

This feature can be used to designate different plotting
symbols, colors, etc. for different groups.

data(mtcars)
plot(mtcars$mpg, mtcars$wt, col = mtcars$gear)
legend("topright", legend = 3:5, col = 3:5, pch =1)

Exercise 5. Graphing

1.
2.

Attach the mtcars dataset, if necessary.

Plot horsepower (hp) as a function of fuel efficiency (mpg). Try varying the
plotting symbol, symbol color, and symbol size.

To figure out what numbers for pch correspond to which plotting symbols, try
this: plot(1:25, pch=1:25). Do it again, but make the symbols larger
(cex = 2)so that you can more clearly see them, and use a background
color (bg = ’red’) because some of the symbols are filled.

Repeat the plot for question 2, but now use different colors for manual (am =
1) versus automatic transmissions (am = 0).

Try this: plot (mpg, hp, type=’'n’). The type="n’ argument says to
set up the axes, but not to plot the data. Try the following: text (mpg, hp,
cyl). This tactic can be useful for controlling precisely what is plotted.

Plot gsec (the time the car takes to complete 1/4 mile) as a function of mpg.
Use identify () tofigure out: (a) which car is the really slow one at the
top middle of the plot, and (b) which are the two cars with terrible fuel
efficiency on the left edge of the plot.

The function identify () takes an optional argument called 1abels which
can be used to label points on a graph. Identify a few points, using the
argument 1abels=rownames (mtcars). Note that the label is placed to
whatever side of the point that you click.

Statistical tests

Generally, statistical tests are performed using built-in functions

X <- rnorm(20, mean = 10, sd = 1)
y <- rnorm(20, mean = 11, sd = 1)

t.test(x,y)

Most return several pieces of information as a list

W <- t.test(x,y)
whp.value # extracts p-value from test

str(w) # compactly shows structure of w

Some commonly used statistical tests

t.test() wilcox.test() # same as Mann-Whitney U
cor.test () ks.test () # Kolmogorov-Smirnov
var.test () fisher.test () # Fisher’s exact test
prop.test() # Test a specified proportion

Exercise 6. Additional exercises

1.

Call up the help for seq (). Look at the different ways of specifying the arguments. Based on this,
generate (a) a sequence from 0 to 20, in steps of 5, and (b) a sequence from 0 to 200 that consists of 30
numbers.

Create a variable x <- rnorm(20,50,4) . Create a new variable, xn, which is a normalized version of x
(i.e., it has a mean of 0, and a standard deviation of 1) by first subtracting its mean and then dividing by its
standard deviation (search the help to find the name of the function that computes standard deviations).
Compare xnto scale(x, center=TRUE, scale=TRUE). Mean-centering and normalizing are
common procedures in multivariate analyses.

Type the following: 1ibrary (MASS). This allows access to a package called MASS (we’ll cover packages
later). In this package is a dataset called Animals. Access it using the data () function, and then
attach it. This data set consists of body mass (body) and brain mass (brain) for a set of animals. How
many rows and columns are in this dataset?

Plot brain as a function of body. Because the data vary by many orders of magnitude, log scales would
help. Plot the data again, this time scaling both axes logarithmically with the argument 1og=“xy”. Use
the function title () to add an informative title to the top of the plot (check its help information, if
necessary, but you can probably guess its usage).

Use the identify () function to figure out which taxa correspond to the three outliers with large bodies
and relatively small brains. One way to to this: assign the results of the identify () function to a variable
called dumb, and subset rows of Animals with dumb. For kicks, now try: plot (body[-dumb],
brain[-dumb], log=“xy”). This illustrates yet another way of subsetting data--can you figure out
how this works?

Data Manipulation

Sorting

X <- ¢(3,1,3,10)

sort(x) # sorts vector (does not replace Xx)
order(x) # gives ranks

rank (x) # gives ranks (averages ties)

Selecting
subset(data) # subsets cases/variables of a dataframe
which(tf) # gives indices for which elements are TRUE

which(mpg<l5) # indices of gas guzzlers

Combining

rbind() # combines rows of vector/matrix
cbind() # combines columns of vector/matrix
merge(dl, d2) # dataframe join (like databases)

Data Manipulation

Tabulating

table(f1l) # counts per unique value of fl
table(fl, f2) # cross tabulation

data(mtcars) # car data again
attach(mtcars)

table(cyl)

table(cyl, am) # tabulate number cylinders vs.

transmission type (am=1 is auto)

> table(cyl, am)

am
cyl 0 1
4 3 8
6 4 3
8 12 2

Addition

o
2 y B

Vector & Matrix Operations

Scalar Multiplication

G —

1.0 0.8

10

0.8 1.0

Matrix Multiplication

G —

1.0 0.8
0.8 1.0

10

element-wise, A & B same shape

1y
XTY = 1o
2.0 1.6
QG__MSQQ
1.0
GO=108

X +Y

2*@

G %*% beta
NOT: G*beta

Vector & Matrix Operations

Transpose swap rows and columns

by owef]
Inverse AA“1 = AA =|
e S PR O
e
Variance-Covariance Matrix S = | C‘ggéﬁ) C‘?Zﬁ;f;) cov(X)

Exercise 7. Data Manipulation, Vectors & Matrices

1.

Load and attach the data mtcars again if needed. Save a subset of this dataframe to a
new variable, car . sub. Include in this only cars with eight cylinders and the columns

mpg, hp, gsec. Now, create the covariance matrix for this reduced dataset.

Covariances are more interpretable when they are scaled as correlation coefficients, so use
the cor () function to create a correlation matrix as well. What does this tell you about the

variables?

For looking at correlations among variables, pairs () is a useful plotting function. Try
pairs(car.sub).

Create a new dataset, x<- rnorm(30). Create a second variable, y, as x +
rnorm(30,mean=0, sd=0.1). Make a scatterplot of x versus y. Does the result make
sense? Test, using the function cor . test () if the two are significantly correlated. Now,
compute cor.test(rank(x), rank(y)). This also called the Spearman rank
correlation coefficient.

If / else statements

Commands can be executed depending on some
condition being TRUE, using if() and else

X <-4

if (x == 4) print(“Oh”) “Oh”

if (x == 3) print(“0h”) # Nothing happens

if (x == 3) print(“0Oh”) else print(“Hey”) “Hey”

Multiple commands within a for() or if() statement
need to grouped with curly braces {}.

if (x==4){
print (‘Wow, x is not equal to 5!7)
print (‘Gee, x 1s not equal to 3, either!’)

}

Writing Functions

There are many functions built-in to R

Sometimes, need to do something for
which no function exists

For example: people who wrote "vegan®
wanted to rarefy and compute diversity
metrics

If it is a general enough task, it can be
useful to write your own function

A totally unnecessary function...

times5 <- function(x)

-

function
name

result <- x*5

return (result)

The function to make
functions is called
function()

argument

} AN

result gets
returned as the
function output

Once defined, it can be used
just like built-in functions

times5(10) 50

A more useful function: RMA

* Ordinary Least-squares
regression assumes all
error is in y-variable

« Often, x-variable has
error too

» Reduced Major Axis
draws a line that allows
for error in both x and y

slope b, = iSy/Sx
intercept | by =Y — b X

RMA

Sourcing R scripts

» We have been entering commands, one at a
time, at the interactive R prompt

« We can also write commands in a text file,
and then tell R to do all of them
consecutively

» The text file of commands = “script”

Mac Win

Open Script | File > Open Document File > Open Script

Source Script| File > Source File File > Source R Code

Sourcing R scripts

76 06 _ Sample.R
| ‘_‘ ..__‘ - - v HMeln cearch
| ¥ | <functions> T} Q~ Help searcl!

1 ## example of a script

3 X <= rnorm(20)

a y <= rnorm(29)

5| X

s plot(x,y, xlab="Fake x", ylab="Fake y", pch=3, col="blue")

One difference: expressions not printed by default

Side note: syntax highlighting is really nice!
Win Users: Rstudio (Mac, to0)

Script style

Rule Do Do Not
Variable names concise | ceph_len X
& meaningful cephLen cephalon_length
Do not overwrite existing c <- 10
variables/functions t <- 10
F <- TRUE

Put spaces around most | x <- 1:10 Xx<-1:10
operators except for :, a < 40 a<40

X <- YI[1,3] X <- Y[, 3]

X <- Y[,3]

Can use spaces for
alignment

total <- a + b
mn <- ¢ +d

Add comments for why,
not what

total has within- and
between group parts

add a and b

Use commented spacer
lines

HUEHBHBHBHBHH
oo #
H====—======#

Line length <= 80
characters; indent with
two spaces

From Wickham (2015)

Exercise 8. Conditionals, and Functions

1. Write a function to compute a Reduced Major Axis. Have it accept as
arguments two vectors, x and y, and have it return a vector of two
elements: the intercept and slope of the RMA. Here are a few hints.

Look at the earlier slide, and figure out all the quantities you need to know
to compute the intercept and slope. You'll need the sign () function in
order to know if the slope is positive or negative (check its help entry).

2. Create a fake data set as follows: x<- rnorm(100, 0, 1) and y<-
x+rnorm(100,0,0.8). Make a scatterplot of x and y. Use your RMA
function on these data, saving the result to res. rma. Now type
abline(res.rma), and look again at your plot. Note:
abline(res.rma) will only work if you have your RMA function return a
vector of c(intercept, slope) as suggested in #1.

3. Repeat#2, butwithy <- rnorm(100, 0, 1), which will make y
uncorrelated with x. Does the resulting RMA slope surprise you?

4. The function for computing a least-squares regression is I1m (), which is
short for linear model. Use this res.1s<- 1m(y~x). Don’t worry too
much about this syntax now because we’ll come back to it later on. Add
the least-squares regression as a dashed, blue line: abline(res.1s,
Lty=2, col="blue’). The RMA slope should be steeper than the
least squares slope.

Importing Data (preliminaries)

* Preliminary: change the working directory via menu
- Mac: Misc, Change Working Directory

- Win: File, Change dir

» The data should be a clean rectangular matrix

« Must be plain text (ASCII), usually exported from
Excel or a database program.

|t Is advisable to have the first row be a header with
names of the variables

« The first column may optionally be row names (labels)

« Example: look at cope.txt (Hunt & Roy 2006, PNAS)

Importing Data

Workhorse function: read. table ()

cope<- read.table(file="cope.txt”, header=TRUE)

It's a good idea to look at it to make sure import worked OK

cope # shows whole dataframe

cope[l:10,] # look at first 10 rows of dataframe

head (cope) # head shows top of any R object

Importing Data

Other variants: read.csv (), read.delim(); read.x1ls()
from package {gdata}

(useful if there are spaces within some fields)

Handy function: file.choose() # navigate to file

cope<- read.table(file=file.choose(), header=T)

attach(cope) # we’ll use it for a while

Row names

!

Dataframe cope

species

ant-M1 anteropunctatus

ant-T1 anteropunctatus

ant-T2 anteropunctatus

ant-E1
ant-E2

din-T3

dinglei
dinglei

dinglei

age depth mg.temp

19.87
5.97
1.09

37.06

34.11

33.91

1962
1545
1545
1478
14738
2318

6.31
3.75
1.65
9.73
3.46
38.37

n valve.length

2
3
1
21

16

673
663
706
607
580
623

Column names

|

For ostracode genus Poseidonamicus, gives species assignment, age (Ma),
bathymetric depth (m), paleotemperature (°C), sample size, and body size
(valve length, in um) for 106 populations.

Factors

- Used to represent categorical data; by default, read.table()
converts columns with characters into factors

» Factors look like strings, but are treated internally as indexes
(integers) with factor names

species # example of a factor

* Factors have levels, which are the unique values it takes
levels(species) # returns levels
nNlevels(species) # returns number of levels

* Factor levels may be ordered (e.g., low, med, high), which is
important in some analyses (see ? factor and ?ordered)

Type conversion

e Sometimes want to convert one kind of data to

another, e.g., a factor to character:
as.character (species)

* Functions: as.xxXx (),where xxx = type

as.numeric() as.character ()

as.logical() as.factor ()

* Useful trick using type conversion
* When logical converted to numeric, T=1; F=0

* Summing a logical vector yields number of TRUE’s

sum(species == “dinglei”) # counts number of pop’s
assigned to “dinglei”

Missing Data

Represented by a special character in R: NA

Many functions have an argument na. rm

« |f TRUE, NA’s are removed
 FALSE is usually default (function returns NA)
e median(x, na.rm=TRUE)

read.table(file, na.strings="NA")
na.strings="-999” # here, missing data are -999

Useful function: complete.cases (cope)
Returns logical vector, T for rows without missing data
cc<- complete.cases(cope) # see also na.omit()

cope.cc<- copefcc,] # only rows w/o NA

Exercise 9. Factors, types, and missing data

1. Plot valve.length versus age in Poseidonamicus using a trick
iInvolving type conversion to easily give a different plotting symbol
to each species.

2. How many of the populations in cope date from before 20 million
years ago? Figure this out by applying sum () to a logical vector.

3. Create a new variable, x<- valve.length. Compute the
median of x. Change the first observation of x to be missing data
by x[1]<- NA. Compute the median of x now. How can you
get the function median to ignore missing data in computing a
median?

4. Warning: factors and factor conversions can be tricky! Remember
that, internally, they are integers, not strings. Take a look at
cbind(cope$species, as.character(cope$species) to
see the difference.

Packages

R is modular, with functions and other objects
separated into units called packages

Some packages are always available: e.g.,
base, stats, graphics

Others need to be made available using the
function 1ibrary (), or via the menus

Many packages are installed by default, more
can be downloaded and installed from within
R.

CRAN Task Views 12
“ + (@ http://cran.r-project.org/web/views/ ¢ | [Q~ Google O
&9 [J] i SIWebaccess Apple Yahoo! Google Maps YouTube Wikipedia News (37)Y Popular v Apache and ...n Mac OS X Ride-on »
CRAN Task Views
Bayesian Bayesian Inference
ChemPhys Chemometrics and Computational Physics
ClinicalTrials Clinical Trial Design, Monitoring, and Analysis
Cluster Cluster Analysis & Finite Mixture Models
Distributions Probability Distributions
Econometrics Computational Econometrics
Environmetrics Analysis of Ecological and Environmental Data
ExperimentalDesign Design of Experiments (DoE) & Analysis of Experimental Data
Finance Empirical Finance
Genetics Statistical Genetics
Graphics Graphic Displays & Dynamic Graphics & Graphic Devices & Visualization
HighPerformanceComputing High-Performance and Parallel Computing with R
Machinel earning Machine Learning & Statistical Learning
Medicallmaging Medical Image Analysis
Multivariate Multivariate Statistics
Naturall anguageProcessing Natural Language Processing
OfficialStatistics Official Statistics & Survey Methodology
Optimization Optimization and Mathematical Programming [|
Pharmacokinetics Analysis of Pharmacokinetic Data c R A N Ta s k v I ews
Phylogenetics Phylogenetics, Especially Comparative Methods
Psychometrics Psychometric Models and Methods
ReproducibleResearch Reproducible Research
Robust Robust Statistical Methods
SocialSciences Statistics for the Social Sciences
Spatial Analysis of Spatial Data
Survival Survival Analysis
TimeSeries Time Series Analysis
gR gRaphical Models in R

To automatically install these views, the ctv package needs to be installed, e.g., via
install.packages("ctv")
library("ctv")

and then the views can be installed via install.views Or update.views (Which first assesses which of the packages are already installed and

up-to-date), e.g.,
install.views("Econometrics")
or
update.views("Econometrics"”)

Exercise 10. Packages, and additional exercise

1. Figure out how to install and load packages using the menus on your
operating system. Practice by installing the the gdata package and
the packages from the tidyverse: install.packages("tidyverse").

2. Practice some plotting using the cope data. Plot valve.length
separately as a function of mg. temp and depth. Use the
symbols () function to plot valve.length versus mg. temp,
plotting circles proportional to depth. Use the argument inches to
control to size of the circles (check the help function).

3. Add the RMA line (using your function) to the cope plot of
valve.length versus mg.temp. Add it to the plot as a blue line.
Compute the least-squares slope and add it as a dotted (Ity=3), red

line.

Statistical Models

* R has special syntax for statistical models, and a lot of
built-in capabilities

« Models represent (hypothesized) relationships among
variables, usually one response (y) and one or more
predictor (x) variables

example
Linear regression: y=[f,+ fBx

T 1

iIntercept slope

Linear Models

» Response variable is a linear function of predictor

variable(s)
* Very common, includes regression & ANOVA
L} L}
Continuous x Categorical x
(humeric) (factors)

Intercept

Model Notation: y ~ x1 + x2 —@
1 I 1
separator Model

Model exclusion

inclusion

The function 1m ()

 Evaluates linear models for best fitting
coefficients

 Returns a list with lots of information

» Example: linear regression

plot(mg.temp, valve.length)
W <- Im(valve.length ~ mg.temp, data = cope)

W # gives only coefficients & formula

abline(w) # adds regression line to plot
summary (W) # gives much more info: stats, P, etc.

str(w) # gives terse view of all elements of w

> summary (w) ## summary of linear regression

Call:
Im(formula = valve.length ~ mg.temp)
Residuals:

Min 1Q Median 3Q Max

-115.369 -44.431 8.367 45.486 104.234

Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) 764.639 10.125 75.522 < 2e-16 ***
mg.temp -19.530 2.466 -7.918 2.77e-12 *x*x
Signif. codes: 0@ “***° 0.001 “**’ 0.01 “*° 0.05 .’ 0.1

Residual standard error: 57.77 on 104 degrees of freedom
Multiple R-Squared: 0.3761, Adjusted R-squared: 0.3701
F-statistic: 62.7 on 1 and 104 DF, p-value: 2.774e-12

Some information-extracting functions
resid(w) coef(w) fitted(w) confint()

ANQVA

Make fake groupings

gg <- rep(c(“a”, “b”), length.out=nrow(cope))

gof<- factor(gg) # convert from character to factor

Compute linear model
wW.a <- Im(valve.length ~ ggf, data=cope)

summary (w.a) # coefficients and p-values
anova(w.a) # standard ANOVA table (SSQ, MSQ, F-test)

Compute linear model

W.sp <- Im(valve.length ~ species, data=cope)
summary (wW.sp) # coefficients and p-values
anova(w.sp) # standard ANOVA table (SSQ, MSQ, F-test)

Exercise 11. Statistical models

1.

Model notation is sometimes used in functions that do not directly involve
statistical models. To see two examples, try the following commands:
plot(valve.length ~ mg.temp), and plot(valve.length ~ species).

Look at the plot of valve.length as a function of mg. temp. Use abline() to
add the line corresponding to the linear regression (w) to the plot. Does the
linear regression seem adequate? In fact, the residuals are nonrandomly
distributed. One common regression diagnostic is to plot the residuals versus
the fitted values. Try this using the fitted () and resid() functions; put the
fitted values on the horizontal axis. Use abline(h=0, 1ty=3) to put a dotted
horizontal line at zero. From left to right, notice that the residuals are mostly
positive, then mostly negative, then mostly positive.

Repeat the symbol plot from exercise 10.3: symbols(mg. temp,

valve.length, circles=depth, inches=0.3). What does this show? Add
the regression line for w again. This plot seems to suggest that depth is having
some effect on body size (note the size of the points above and below the line).

To incorporate depth, perform a multiple regression in which mg. temp and
depth are jointly used to predict valve.length; save the results to a variable
called w. td. Is mg . temp still significant? How about depth? Redo the
diagnostic plot looking at fitted and residual values. Does adding the extra
variable result in better-looking residuals? Note that, in terms of interpretation,
both of these variables reflect temperature: mg. temp is a proxy for global deep-
water temperature, and, at any point in time, deeper waters are colder than
shallower waters.

FYI: try plot(w), which shows several useful diagnostic plots for regressions.

Residuals

50 100

0

-100

Residuals vs Fitted

| | |
600 650 700

Fitted values
Im(valve.length ~ mg.temp)

Looping Basics

Situation

You have a set of objects (sites, species, measurements,
etc.) and you want to do some computation to each one

The function that makes loops is for ()

iterator vector over which 1 iterates

$ 4

for (1 1n 1:5){
print (i)

Sets up multiple passes, one for
each element of the vector.

Here, 1 is 1 on the first pass, 2
on the second pass, and so on.

Looping Basics

Usually, you want to save information with each pass, and
SO you need to set up an array to store that information

femur <- c(10, 8, 14, 22, 32) # 5 femora lengths

1 log.femur <- array(dim=5) # set up new variable

2
for (i in 1:5){ 3
log.femur[i1] <- log(femur[i])
\ 1 set up variable to save computations

2 figure out indices to loop over

3 do calculations; save into results array

Here, looping Iis not necessary 1og.femur <- log(femur)

Apply-family of functions

« Set of functions that allow one to perform
operations over chunks/subsets of the data

« Avoids loops (can be much faster)

« Different functions for different data structures

apply (X, MARGIN, FUN, ...)
matrix or function
dataframe to apply
1 =rows other arguments

2 = cols to FUN

apply (X, MARGIN, FUN)

X <- matrix(1:12, nrow = 3, ncol = 4)

1 [,2] [,3]1 [.,4] [,1] [,2] [,3] [,4]
(1, 1 4 / 10 L] 1 4 / 10
(2,] 2 5 3 11 (2,] 2 5 3 11
[3,] 3 6 9 12 [3,] 3 6 9 12
apply (X, MARGIN = 2, FUN = sum) apply (X, MARGIN = 1, FUN = sum)
6 15 24 33 22 26 30

shortcuts
colSums (X)
colMeans (X)

rowsSums (X)

rowMeans (X)

Other versions

lapply () and sapply () operate over lists -
repeatedly call FUN to each element of a list

make a list of t-tests
tl <- 1list()
for(i in 1:100){
tL1[[1]] <- t.test(rnorm(1l00@), rnorm(1l00))

1look at str(tl[[1l]]) to see components

ff <- function(x) x%$p.value # extract p.value element
pvl <- lapply(tl, ff)

pvs <- sapply(tl, ff) # same, but converts to vector

pvs <- sapply(tl, “[[", “p.value”) # another way to do extraction

Other versions

version notes

sapply (X, FUN) like Tapply () but simplifies output to
vector or matrix

tapply (X, INDEX, FUN) applies FUN over subgroups defined by
factor INDEX

mapply (FUN, ..) multivariate version - accepts more than
one list or vector as arguments, drawn
from ...

mclapply (X, FUN) parallel (multicore) version of lapply(); in

package {parallel}. [not Windows, see
parLapply () instead.]

Exercise 12. Looping

1.

4.

Use a loop to go through all the species in the Cope dataset and
compute the mean valve.length for each species. Save these mean valve
lengths to a vector.

Question #1 can be done much more simply using tapply (). Do so,
referring to the help page as needed.

Go back to mtcars. Compute average mpg separately for each 4, 6 and
8 cylinder cars.

Apply and similar functions are sometimes -- but not always -- faster than
loops. Test this with a large matrix, M <- matrix(rnorm(le6), nrow =
le2, ncol = 1led). There is a helper function, system. time (expr),
that tells you how much time it takes R to execute the R command expr.
Use this to time how long it takes to compute column sums using apply,
and then using a for loop. You'll want to write a new function to do the
column sums using a loop so that it can be used as the argument to
system.time().

Classes inR

R is sometimes referred to as an ‘object-oriented’
language

Everything you create in R is an object: functions,
variables, etc.

Classes are categories of objects. Many standard
ones:. numbers, character strings, arrays,
dataframes, lists.

The class () function tells you an object’s class.

class(1.4) # “numeric”
class(cope) # “dataframe”

class(TRUE) # “logical”

Classes inR

* There are also more specialized classes

X <- rnorm(50); y <- rnorm(50)
W <- 1Im(y ~ X)

class(w) # “1Im”

* Some functions are generic, meaning they call

specialized versions depending on the class of the
argument

« Common generics include: plot (), print(),

summary () ; specialized versions are of the form
function.class ()
plot.1lm()

print.1m()

Exercise answers follow

Exercise Answers
Ex 1: (1) x<- 46; xx<- (x/2)™ (2) y<- TRUE; y<- “Cambrian”
Ex 2: (1) XX<- matrix(1l:12, nrow=3, ncol=4); y<- XX[3,] (2) y2<- 10*y (3) number of columns of XX (=4)

Ex 3: (2) dim(mtcars) (3) mean(mtcars$mpg); median(mtcars$mpg); (4) mtcars[,1:2]; mtcars[,c(1,4)];
mtcars[1:10,]; mtcars[1:10, 1:3] (5) RelPower<- mtcars$hp/mtcars$wt

Ex 4: (1) attach(mtcars); mean(mpg[wt>3]); mean(mpg[wt<3]) (2) hp[wt<3 & mpg>=25] (3) muscle<- hp>200; rn<-
rownames (mtcars); rn[muscle]

Ex 5: (1) attach(mtcars) (2) plot(mpg, hp, pch=3, col="red”) (4) pcol=rep(“red”, times=nrow(mtcars));
pcol[am == 1] <- “blue”; plot(mpg, hp, pch=21, bg=pcol, cex=2) OR: plot(mpg, hp, pch=21, bg=am+l, cex=2) (6)
plot(mpg, qsec); identify(mpg, gsec) (7) identify(mpg, gsec, labels=rownames(mtcars))

Ex 6: (1) seq(0,20,5); seq(0,200, length.out=30) (2) xn<- (x-mean(x))/sd(x) (3) 5% of the time (3)
dim(Animals) (4) attach(Animals); plot(body, brain, log="xy”); title(“Brain size allometry”) (5) dumb<-
identify(body, brain)

Ex 7: (1) car.sub<- mtcars[mtcars$cyl==8, c(‘mpg’, ‘hp’, ‘qgsec’)]; SS<- cov(car.sub); RR<- cor(car.sub)
Ex 8: See next page.

Ex 9: (1) plot(age, valve.length, pch=as.numeric(species)); legend(x="topright", pch=1:19, levels(species),
cex=0.6) (2) sum(cope$age>20) (3) median(x, na.rm=TRUE)

Ex 10: (2) symbols(cope$mg.temp, cope$valve.length, circles=cope$depth, inches=0.3)
Ex 11: (2) plot(fitted(w), resid(w)) (4) w.td<- 1Im(valve.length ~ mg.temp + depth)

Ex 12: (1) See next page. (2) tapply(valve.length, INDEX = species, FUN = mean) (3) tapply(mtcars$mpg,
INDEX=mtcars$cyl, FUN=sum) (4) See next page.

Reduced major axis (Ex. 8-1)

RMA<- function(x,y)

{

compute needed summary statistics
mx <- mean(x)

my <- mean(y)

sx <- sd(x)

sy <- sd(y)

rxy <- cor(x,y)

compute slope and intercept
bl <- sy / sx * sign(rxy)
b® <- my - bl * mx

combine slope and intercept into a vector
result<- c(b@,bl)
return(result) # abline(result) will work!

speed of loops versus apply (Ex. 12-4)
M <- matrix(rnorm(le6), nrow=leZ, ncol=1e4)

system.timeCapply(M, 2, sum)) # 0.033 sec on my machine
system.time(colSums(M)) # much faster! 0.001 sec

now, using loops
loopColSum <- function(M){
nc <- ncol(M)
cm <- array(dim=nc) # vector to store colsums
for(i in 1:nc) cam[i]<- sum(M[,1]) # loop thru columns, get each sum

return(cm)

}

system.time(loopColSum(M)) # faster than apply, 0.02 sec on my machine

Looping example (Ex. 12-1)
1sp<- levels(species) # all species nhames
nsp<- nlevels(species) # number of species

mn.len<- array(dim=nsp) # vector to store mean lengths by species
names(mn.len)<- 1sp # give the vector elements names for the species

for(1 in 1l:nsp){
sub <- species == lsp[i]
mn.len[1] <- mean(valve.length[sub])

}

