R Bootcamp

Gene Hunt NMNH, Smithsonian Institution Analytical Paleobiology Workshop Gainesville, FL July 2018

- Get comfortable with R
- R commands, syntax, rules
- R programming

Background on R

- Descended from S (Bell Labs); both S and R are used heavily by statisticians
- Open source, maintained by a volunteer committee
- Practical Benefits:
 - Free, available for all major OS
- Scientific Benefits:
 - High level (powerful functions built-in)
 - Powerful statistical, graphics capabilities
 - Extendable (user contributed packages)

Getting additional help

What are R and CRAN?

R is 'GNU S', a freely available language and environment for statistical computing and graphics which provides a wide variety of statistical and graphical techniques: linear and nonlinear modelling, statistical tests, time series analysis, classification, clustering, etc. Please consult the <u>R project homepage</u> for further information.

CRAN is a network of ftp and web servers around the world that store identical, up-to-date, versions of code and documentation for R. Please use the CRAN mirror nearest to you to minimize network load.

Submitting to CRAN

"An Introduction to R"

not very useful; go to "contributed documentation" > Maindonald

Ways to use *R*

- As a statistics package (ANOVA, nonparametrics, ordinations)
- As a programming language (resampling, morphometrics, likelihood approaches)
- Phylogenetic comparative methods
- For publication graphics

FIGURE 5.—Phylogeny of ornithischian dinosaurs from the composite tree of Carrano (2006) modified according to other studies (Ford and Kirkland, 2001; Weishampel et al., 2003; Novas et al., 2004; Vickaryous et al., 2004; Averianov et al., 2006; Ryan, 2007; Carpenter et al., 2008; Maidment et al., 2008; You et al., 2008; Arbour et al., 2009; Boyd et al., 2009; Dalla Vecchia, 2009; Sues and Averianov, 2009; Butler et al., 2010), with branch lengths scaled to geological time. Taxon names are omitted for clarity, although a few of the larger named clades are labeled below the appropriate node. Symbol sizes are scaled to log femur length. Time axis extends backwards from the youngest terminal taxa, in millions of years.

The R Session

R Co	nsole			
🥌 💽 🕋 🕋 🐑				
] Q Help Search			
R version 3.5.0 (2018-04-23) "Joy in Playing" Copyright (C) 2018 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin15.6.0 (64-bit)				
R is free software and comes with ABSOLUTELY You are welcome to redistribute it under cer Type 'license()' or 'licence()' for distribu	NO WARRANTY. tain conditions. tion details.			
Natural language support but running in an	English locale			
R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications.				
Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R.				
[R.app GUI 1.70 (7521) x86_64-apple-darwin15	5.6.0]			
>				

The Interactive R prompt

> 2 2 2 > 2 + 2 4

Saving information as variables

x * 5 40 y <- "tooth"

Variable assignment

- 1. Can also use = and -> as assignment operator
 - y <- 18 y = 18 18 -> y
- 2. Names in *R* are case-sensitive

tri <- 18
Tri <- 25 # these are different variables</pre>

Types of variables

Mode	Example
Numeric	5, 2.34
Character	"Ostracoda", 'b'
Logical	TRUE, FALSE, T, F
Factor	{for categorical data}
Complex	2 + 3i

Action	Symbol	Example
Arithmetic	+ - * / ^	2 + 2 5 * 4 + 1 ^12 5 * (4 + 1)^12
Assignment	< -	x <- 2 + 3

 R uses standard rules for order of operations: ^ before */ before +-

• To group operations, or if unsure of the rules, use parentheses

Exercise 1. Variable Assignment

- 1. Create a variable, x, and assign it a value of 46. Create a new variable, xx, that is equal to the one-half of x, raised to the 4th power.
- 2. Create a variable, y, and assign it a value of TRUE. Then assign y a value of "Cambrian".

Functions

Functions take information (=arguments), do something with it, and return a result

sqrt() #computes the square root of its argument
sqrt(25) 5

seq() generates regular sequences of numbers
seq(1,5) 1 2 3 4 5

1:5 1 2 3 4 5 # special shortcut

seq(1,10)	Arguments specified by order
<pre>seq(from = 1, to = 10) seq(to = 10, from = 1)</pre>	Arguments specified by name
seq(10, 20, 2)	Third argument is increment
seq(10, 20, by = 2)	Can mix order and name specifiers

Using the Help

- If you know the function name
 help(function) # or, ?function
 example(function) # shows the example from help
- To search for help on a topic

help.search("topic") # e.g., help.search("covariance")

```
# same as ??covariance
```

Easier Way

- Mac OS: use Spotlight toolbar
- Windows: use HTML Help

	R Help	
	< > Print	Q Help Search
function name {package}	sd {stats}	R Documentation
	Standard Deviation	ı
	Description	
snort description	This function computes the standard deviation of the values in x . If removed before computation proceeds.	na.rm is TRUE then missing values are
	Usage	
how to use it	sd(x, na.rm = FALSE) this argument has a	default
	Arguments	
what arguments	x a numeric vector or an R object which is coercible to one by	as.double(x).
mean	na.rm	
	logical. Should missing values be removed?	
	Details	
	Like <u>var</u> this uses denominator $n - 1$.	
more info	The standard deviation of a zero-length vector (after removal of NAS gives an error. The standard deviation of a length-one vector is NA.	s if na.rm = TRUE) is not defined and
	See Also	
	var for its square, and mad, the most robust alternative.	
example	Examples	
	sd(1:2) ^ 2	
	[Package stats version 3.3.2 In	ndex]

Combining elements into arrays

- Arrays are regular arrangements of multiple elements
- Must be the same type (e.g., all numbers)
- Vectors are 1D arrays, matrices are 2D arrays.

length(x) 4 # number of elements in x

Extracting/subsetting element(s) from a vector using []

x[2] 14 x[2:3] 14 35 x[c(2,4)] 14 50 **1**() is needed to specify a vector

2D Arrays: Matrices

X <- matrix(1:6, nrow=3, ncol=2)

 $\left(\begin{array}{ccc} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{array} \right) \hspace{1cm} X[1,2] \hspace{0.1cm} element \hspace{0.1cm} in \hspace{0.1cm} 1st \hspace{0.1cm} row, \hspace{0.1cm} 2nd \hspace{0.1cm} column \\ X[1,] \hspace{0.1cm} whole \hspace{0.1cm} 1st \hspace{0.1cm} row \hspace{0.1cm} of \hspace{0.1cm} X \\ X[\hspace{0.1cm},2] \hspace{0.1cm} whole \hspace{0.1cm} 2nd \hspace{0.1cm} column \hspace{0.1cm} of \hspace{0.1cm} X \\ \end{array}$

Some useful functions

nrow(X)	3	<pre># number of rows</pre>
ncol(X)	2	<pre># number of columns</pre>
dim(X)	32	<pre># dimension = c(nrow, ncol)</pre>

X <- matrix(1:6, nrow=3, ncol=2)</pre> $X \leftarrow array(1:6, dim=c(3,2)) \# same result$

Operations on Arrays

- Many operations and functions can be applied to numbers, vectors and matrices.
- Operations are usually done element-wise

x <- 1:4 1 2 3 4 x+5 6 7 8 9 sqrt(x) 1 1.41 1.73 2

Action	Example
Combine elements into an array	c(1,2,10,22)
Make a matrix	<pre>matrix(1:4, nrow=2, ncol=2)</pre>
	array(1:4, dim=c(2,2))
Subset a vector	y[3] # 3rd element of vector y
Subset a matrix	X[1,4] # 1st row, 4th column
	X[3,] # whole 3rd row
	X[,4] # whole 4th column

Exercise 2. Arrays and matrices

- 1. Create a matrix, XX, with 3 rows and 4 columns from the numbers 1:12. Take the 3rd row of this matrix, and assign it to a new variable, y.
- 2. Create a new vector of same size as y, with each element 10 times the corresponding value in y.
- 3. What does the following command give you: dim(XX)[2]? Reason it out first, then check your answer.

Lists

Used to combine different types of information into a single object

```
w <- list("yes", 32, TRUE)
w[2] 32 # just like a vector</pre>
```

List elements can be accessed by name

```
me <- list(firstname = "Gene", id=40172)
me$firstname "Gene"
me$fir "Gene" # can shorten, if unambiguous
me[1] "Gene"
me[[1]] "Gene" # drops names attributes</pre>
```

Dataframes

- Rectangular table of information, not necessarily of the same type (numbers, text, etc).
- Usually, this is the form your data will be in when you import it

	habitat	taxon l	taxon2	taxon3	Column names
site l	forest	0	20	10	colnames()
site2	forest	34	3	44	
site3	grassland	23		112	
site4	grassland	0	5	67	
					-

Row names

rownames()

		habitat	taxon l	taxon2	taxon3
ahund =	site l	forest	0	20	10
	site2	forest	34	3	44
	site3	grassland	23	Ι	112
	site4	grassland	0	5	67

• Rows and columns can be accessed by number, like a matrix

abund[1,3] 10 abund[2,] # all of 2nd row

- Columns can be accessed by name, like a list abund\$taxon2 # all of 2nd column
- Use attach() to access variable names directly attach(abund) taxon2 # all of 2nd column detach(abund) # undoes the attach()

- Some datasets are built-in to R for purposes of illustration.
- They can be accessed using the data() function, which makes the objects available in the workspace.

Exercise 3. Dataframes

- Make the dataset mtcars available by typing data(mtcars). This dataset summarizes information about models of cars in 1973. Take a look a the data by typing mtcars. Note that row names are the car models and the columns are attributes of the car models (a description of what the variables mean can be found by typing ?mtcars).
- 2. How many rows and columns are there in this dataset?
- 3. Use the functions mean() and median() to calculate the mean and median of fuel efficiency (mpg) and car weights (wt, in thousands of pounds).
- How would you save to a different variable the following subsets of this dataframe: (a) columns 1 and 2; (b) columns 1 and 4; (c) the first ten rows; (d) the first ten rows and the first three columns.
- 5. Make a new vector called RelPower which is equal to the horsepower of a car (hp), divided by its weight (wt).

Testing Relationships

Greater than, less than	>, <
Greater or equal to, less than or equal to	>=, <=
Equal, not equal	==, !=
AND, OR	&,

- x <- 4
- x > 10 FALSE
- x <- c(4,8,30,52)
- x > 10 FALSE FALSE TRUE TRUE
- x < 50 TRUE TRUE TRUE FALSE
- x > 10 & x < 50 FALSE FALSE TRUE FALSE

Subsetting vectors

x <- c(4,8,30,52)

What if we want only those x greater than 10?

1. Choose by their indices

x[c(3,4)] 30 52 x[c(4,3)] 52 30 # order is respected

2. Using logical (T/F) vectors

x[c(FALSE,FALSE,TRUE,TRUE)] 30 52

x > 10 FALSE FALSE TRUE TRUE

x[x > 10] 30 52

Subsetting vectors

3. Using the elements' names

x[c('b', 'c')] 2 3 # prints with names above

Greater than, less than	>, <
Greater or equal to,	>=, <=
less than or equal to	
Equal, not equal	==, !=
AND, OR	&, (&&,)
Subset by indices	x[c(1,4)]
Subset by logical	x[x > 10]

Exercise 4. Subsetting

- Continuing with the mtcars dataset, compute separately the mean fuel efficency (mpg) of big cars (>3,000 pounds), and small cars (<3,000 pounds). Note that wt is in units of thousands of pounds.
- Extract a vector of horsepower (hp) values for cars that are both small (wt<3) and fuel-efficient (mpg>=25).
- 3. Create a logical vector called muscle that is TRUE when a car has high horsepower (hp>200). The function rownames() returns the row names for a matrix or data table. Use this function, along with your muscle vector, to return the model names of the powerful cars.

Graphing

- Powerful graphing capabilities
- Can be saved as vector graphics (PDF, postscript)
- Can add to a plot, but can't edit what's already there (not clickable)

Oth rule of data analysis Plot your data! (J. Sepkoski)

MDS ordination of 1973 Car data dot size ∝ mpg

Making Graphs

Generate some fake data

```
x <- rnorm(n=20,mean=0,sd=1)</pre>
```

```
# random normal numbers
# same as rnorm(20,0,1)
# same as rnorm(20)
```

y <- rnorm(n=20,mean=100,sd=10)</pre>

Try some plots...

plot(x) plot(x,y)
plot(x, type="l") plot(x,y, pch=2)
plot(x, type="b") plot(x,y, pch=3, col="red")

Other common graphing functions

hist()	pie()
<pre>barplot()</pre>	<pre>contour()</pre>
<pre>boxplot()</pre>	

Common arguments to graphing functions

col	Color	col = "red", col = 2
cex	Character size	cex = 2 # twice as big
pch	Plotting symbol	pch = 5 # diamonds
lty	Line type	lty = 2 # dashed
log	Log-scale axes	log = "x", log = "xy"

Things you can add to existing plots

title()	legend()
abline()	arrows()
points()	<pre>segments()</pre>
text()	rect()
polygon()	symbols()

More about colors

colors() # gives list of 657 color names

coral3	deeppink4	gray27	gray87	grey39	grey99	lightpink1	mistyrose1	pink4	slategray1	
coral2	deeppink3	gray26	gray86	grey38	grey98	lightpink	mistyrose	pink3	slategray	
coral1	deeppink2	gray25	gray85	grey37	grey97	lightgrey	mintcream	pink2	slateblue4	
coral	deeppink1	gray24	gray84	grey36	grey96	lightgreen	midnightblue	pink1	slateblue3	yellowgreen
chocolate4	deeppink	ğray23	gray83	grey35	grey95	lightgray	mediumvioletred	pink	slateblue2	yellow4
chocolate3	darkviolet	gray22	gray82	grey34	grey94	lightgoldenrodyella	mediumturguoise	e peru	slateblue1	vellow3
chocolate2	darkturguoise	ărav21	grav81	arev33	arev93	lightgoldenrod	ediumspringaree	en peachpuff4	slateblue	vellow2
chocolate1	darkslategrev	drav20	grav80	arev32	arev92	lightgoldenrod3	mediumslateblue	peachpuff3	skyblue4	vellow1
chocolate	darkslategrav4	grav19	drav79	drev31	arev91	lightgoldenrod2	nediumseagreer	peachpuff2	skyblue3	vellow
chartrouso4	darkslategrav3	drav18	grav78	grey30	drev90	lightgoldenrod1	mediumpurple4	neachpuff1	skyblue2	whitosmoko
chartrouse?	darkslategrav2	arav17	gray77	grey29	grov80	lightgoldenrod	mediumpurple3	peachpuff	skyblue1	wheet4
chartreuses	darkelatograv1	gray 16	gray76	grey23	grov88	lightevand	modiumpurple3	peachpuli	skybluo	wheat?
chartreusez	darkelatogray	gray 10	gray70	grou27	grey00	lightowan2	mediumpurplez	papayawinp	Skyblue	wheats
chartreuse	uarksiategray	gray 15	gray75	grey27	greyor	lightoward	mediumpurple	palevioletred2	sienna4	wneatz
chartreuse	darkslateblue	gray 14	gray74	greyzo	greyoo	lightcyanz	mediumpurple	palevioletreus	siennas	wneat1
cadetblue4	darkseagreen4	grayis	gray <u>73</u>	grey25	grey85	lightcyan	mediumorchid4	palevioletredz	sienna2	wheat
cadetblue3	darkseagreen3	gray12	gray/2	grey24	grey84	lightcyan	mediumorchid3	palevioletred1	sienna1	violetred4
cadetblue2	darkseagreen2	gray11	gray/1	grey23	grey83	lightcoral	mediumorchid2	palevioletred	sienna	violetred3
cadetblue1	darkseagreen1	gray10	gray70	grey22	grey82	lightblue4	mediumorchid1	paleturquoise4	seashell4	violetred2
cadetblue	darkseagreen	gray9	gray69	grey21	grey81	lightblue3	mediumorchid	paleturquoise3	seashell3	violetred1
burlywood4	darksalmon	ğray8	gray68	grey20	grey80	lightblue2	mediumblue	paleturguoise2	seashell2	violetred
burlywood3	darkred	ğray7	ğray67	arev19	grey79	lightblue1 m	ediumaguamarir	ealeturguoise1	seashell1	violet
burlywood2	darkorchid4	ărav6	ğrav66	ărev18	arev78	lightblue	maroon4	paleturquoise	seashell	turquoise4
burlywood1	darkorchid3	grav5	grav65	arev17	arev77	lemonchiffon4	maroon3	palegreen4	seagreen4	turquoise3
burlywood	darkorchid2	drav4	grav64	arev16	grev76	lemonchiffon3	maroon2	palegreen3	seagreen3	turquoise2
brown4	darkorchid1	grav3	grav63	arev15	grev75	lemonchiffon?	maroon1	palegreen2	seagreen2	turquoise1
brown3	darkorchid	drav2	drav62	arev14	grey74	lomonchiffon1	maroon	nalegreen1	seagreen1	turquoise
brown2	darkorange4	arav1	gray61	arov13	groy73	lomonohiffon	magenta	nalegreen	seagreen	tomato
brown2	darkorange3	gray	gray60	arov12	grey73	lawngroon	magenta3	nalogoldoprod	sandybrown	tomato2
brown	darkorango2	grayu	gray50	grov11	grov71	lawigieen	magenta	palegolueritou	Sandybrown	tomatos
brown	darkorango1	gidy	gray55	grey11	grey71	lavenderblush4	magental	Orchid4	saimon4	tomatoz
Diueviolet	darkorangei	goldenrod2	gray50	greyio	grey/0	lavenderblush3	magenta	orchida	saimona	tomator
blue4	darkorange	goldenrods	gray57	greyg	greyby	lavenderblush2	magenta	orchid2	saimon2	tomato
blue3	darkolivegreen4	goldenrodz	graybo	greyg	greyoo	lavenderblush1	linen	orchid1	salmon1	thistle4
blue2	darkolivegreen3	goldenrodi	gray55	grey/	grey67	lavenderblush	limegreen	orchid	salmon	thistle3
blue1	darkolivegreen2	goldenrod	gray54	greyg	grey66	lavender	lightyellow4	orangered4	saddlebrown	thistle2
blue	darkolivegreen1	gold4	gray53	grey5	grey65	khaki4	lightyellow3	orangered3	royalblue4	thistle1
blanchedalmono	darkolivegreen	gold3	gray52	grey4	grey64	khaki3	lightyellow2	orangered2	royalblue3	thistle
black	darkmagenta	gold2	gray51	grey3	grey63	khaki2	lightyellow1	orangered1	royalblue2	tan4
bisque4	darkkhaki	gold1	gray50	grey2	grey62	khaki1	lightyellow	orangered	royalblue1	tan3
bisque3	darkgrey	gold	gray49	grey1	grey61	khaki	lightsteelblue4	orange4	royalblue	tan2
bisque2	darkgreen	ghostwhite	grav48	ărev0	grey60	ivorv4	lightsteelblue3	orange3	rosybrown4	tan1
bisque1	darkgrav	gainsboro	grav47	grey	arev59	ivorv3	lightsteelblue2	orange2	rosvbrown3	tan
bisque	darkgoldenrod4	forestareen	grav46	areenvellow	arev58	ivorv2	lightsteelblue1	orange1	rosybrown2	steelblue4
beige	darkgoldenrod3	floralwhite	grav45	areen4	arev57	ivorv1	lightsteelblue	orange	rosybrown1	steelblue3
azure4	darkgoldenrod2	firebrick4	grav44	areen3	grev56	ivory	lightslategrey	olivedrab4	rosybrown	steelblue?
azure3	darkgoldenrod1	firebrick3	grav43	areen2	arev55	indianred4	lightslategray	olivedrab3	red4	steelblue1
271102	darkgoldenrod	firobrick2	grav42	green1	grev54	indianrod3	lightslateblue	olivedrab3	rod3	stoolbluo
azurez	darkovan	firebrick1	grav41	areen	drev53	indianred2	lightskyblue4	olivedrab2	red3	springgreen4
azure	darkbluo	firebrick	gray40	drav100	grey52	indianrod1	lightskyblue3	olivedrab	red2	springgreen3
aguamarino	Cyand	dodgerblue4	gray 30	gray 100	grey52	indianred	lightskyblue2	oldlooo	red	springgreen3
aquamarine	Cydri4	dodgerblue4	gray55	gray99	grey51	Indianred	lightskyblue1	olulace	red	springgreenz
aquamarines	Cyano	dodgerblue3	gray 30	gray90	grey50	hotpink4	lightelightel	navyblue	purple4	springgreent
aquamarinez	cyanz	dodgerbluez	grays7	gray97	grey49	notpinks	lightskyblue	navy	purples	springgreen
aquamarine1	cyan1	dodgerblue1	gray36	gray96	grey48	notpink2	lightseagreen	navajownite4	purpiez	snow4
aquamarine	cyan	doagerblue	gray35	gray95	grey47	notpink1	lightsalmon4	navajownite3	purple1	snow3
antiquewhite4	cornsilk4	aimgrey	gray34	gray94	grey46	hotpink	lightsalmon3	navajowhite2	purple	snow2
antiquewhite3	cornsilk3	dimgray	gray33	gray93	grey45	honeydew4	lightsalmon2	navajowhite1	powderblue	snow1
antiquewhite2	cornsilk2	deepskyblue4	gray32	gray92	grey44	honeydew3	lightsalmon1	navajowhite	plum4	snow
antiquewhite1	cornsilk1	deepskyblue3	gray31	gray91	grey43	honeydew2	lightsalmon	moccasin	plum3	slategrey
antiquewhite	cornsilk	deepskyblue2	grav30	grav90	grev42	honevdew1	lightpink4	mistyrose4	plum2	slategrav4
aliceblue	cornflowerblue	deepskyblue1	grav29	grav89	grev41	honevdew	lightpink3	mistyrose3	plum1	slategrav3
white	coral4	deepskyblue	grav28	grav88	grev40	grev100	lightpink2	mistyrose2	plum	slategrav2

See R color cheat sheet

More about colors

Colors and RGB

rgb(red, green, blue, alpha) # specify color by RGB components col2rgb("pink")

Color Palettes

palette()	<pre># tells you what color is 1, 2, etc. # can also use to set these values</pre>
example(rainbow)	<pre># sets color ranges # see also colorRamp()</pre>

See R color cheat sheet

Alternative paradigm: package ggplot2 of the 'tidyverse'

Interacting with plots

locator()	Gives x,y coordinates of clicked location		
identify()	<pre>Identifies data point nearest to click identify(x,y) # returns index of clicked points</pre>		

Varying parameters for different points

Many graphing arguments can be a vector of the same length as the data.

This feature can be used to designate different plotting symbols, colors, etc. for different groups.

```
data(mtcars)
plot(mtcars$mpg, mtcars$wt, col = mtcars$gear)
legend("topright", legend = 3:5, col = 3:5, pch =1)
```

Exercise 5. Graphing

- 1. Attach the mtcars dataset, if necessary.
- 2. Plot horsepower (hp) as a function of fuel efficiency (mpg). Try varying the plotting symbol, symbol color, and symbol size.
- 3. To figure out what numbers for pch correspond to which plotting symbols, try this: plot(1:25, pch=1:25). Do it again, but make the symbols larger (cex = 2) so that you can more clearly see them, and use a background color (bg = 'red') because some of the symbols are filled.
- 4. Repeat the plot for question 2, but now use different colors for manual (am = 1) versus automatic transmissions (am = 0).
- 5. Try this: plot(mpg, hp, type='n'). The type='n' argument says to set up the axes, but not to plot the data. Try the following: text(mpg, hp, cyl). This tactic can be useful for controlling precisely what is plotted.
- 6. Plot qsec (the time the car takes to complete 1/4 mile) as a function of mpg. Use identify() to figure out: (a) which car is the really slow one at the top middle of the plot, and (b) which are the two cars with terrible fuel efficiency on the left edge of the plot.
- 7. The function identify() takes an optional argument called labels which can be used to label points on a graph. Identify a few points, using the argument labels=rownames(mtcars). Note that the label is placed to whatever side of the point that you click.

Statistical tests

Generally, statistical tests are performed using built-in functions

```
x <- rnorm(20, mean = 10, sd = 1)
y <- rnorm(20, mean = 11, sd = 1)
t.test(x,y)</pre>
```

Most return several pieces of information as a list

```
w <- t.test(x,y)
w$p.value  # extracts p-value from test
str(w)  # compactly shows structure of w</pre>
```

Some commonly used statistical tests

t.test()	wilcox.test()	<pre># same as Mann-Whitney U</pre>
<pre>cor.test()</pre>	ks.test()	# Kolmogorov-Smirnov
var.test()	fisher.test()	<pre># Fisher's exact test</pre>
<pre>prop.test()</pre>	# Test a speci	fied proportion
Exercise 6. Additional exercises

- Call up the help for seq(). Look at the different ways of specifying the arguments. Based on this, generate (a) a sequence from 0 to 20, in steps of 5, and (b) a sequence from 0 to 200 that consists of 30 numbers.
- Create a variable x <- rnorm(20,50,4). Create a new variable, xn, which is a normalized version of x (i.e., it has a mean of 0, and a standard deviation of 1) by first subtracting its mean and then dividing by its standard deviation (search the help to find the name of the function that computes standard deviations). Compare xn to scale(x, center=TRUE, scale=TRUE). Mean-centering and normalizing are common procedures in multivariate analyses.
- 3. Type the following: library(MASS). This allows access to a package called MASS (we'll cover packages later). In this package is a dataset called Animals. Access it using the data() function, and then attach it. This data set consists of body mass (body) and brain mass (brain) for a set of animals. How many rows and columns are in this dataset?
- 4. Plot brain as a function of body. Because the data vary by many orders of magnitude, log scales would help. Plot the data again, this time scaling both axes logarithmically with the argument log="xy". Use the function title() to add an informative title to the top of the plot (check its help information, if necessary, but you can probably guess its usage).
- 5. Use the identify() function to figure out which taxa correspond to the three outliers with large bodies and relatively small brains. One way to to this: assign the results of the identify() function to a variable called dumb, and subset rows of Animals with dumb. For kicks, now try: plot(body[-dumb], brain[-dumb], log="xy"). This illustrates yet another way of subsetting data--can you figure out how this works?

Data Manipulation

Sorting

x <- c(3,1,3,10)
sort(x) # sorts vector (does not replace x)
order(x) # gives ranks
rank(x) # gives ranks (averages ties)</pre>

Selecting

subset(data) # subsets cases/variables of a dataframe
which(tf) # gives indices for which elements are TRUE
which(mpg<15) # indices of gas guzzlers</pre>

Combining

rbind() # combines rows of vector/matrix
cbind() # combines columns of vector/matrix
merge(d1, d2) # dataframe join (like databases)

Data Manipulation

Tabulating

table(f1) # counts per unique value of f1 table(f1, f2) # cross tabulation

Vector & Matrix Operations

Addition element-wise, A & B same shape

$$\mathbf{x} = \begin{bmatrix} 1\\2 \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} 10\\10 \end{bmatrix} \qquad \mathbf{x} + \mathbf{y} = \begin{bmatrix} 11\\12 \end{bmatrix} \qquad \mathbf{x} + \mathbf{y}$$

Scalar Multiplication

$$\mathbf{G} = \begin{bmatrix} 1.0 & 0.8 \\ 0.8 & 1.0 \end{bmatrix} \qquad 2\mathbf{G} = \begin{bmatrix} 2.0 & 1.6 \\ 1.6 & 2.0 \end{bmatrix} \qquad \mathbf{2*G}$$

Matrix Multiplication

$$\mathbf{G} = \begin{bmatrix} 1.0 & 0.8 \\ 0.8 & 1.0 \end{bmatrix} \quad \beta = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad \mathbf{G}\beta = \begin{bmatrix} 1.0 \\ 0.8 \end{bmatrix}$$

G %*% beta NOT: G*beta

Vector & Matrix Operations

Transpose swap rows and columns

$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \qquad \mathbf{A}^{\mathrm{T}} = \begin{bmatrix} a & c \\ b & d \end{bmatrix} \qquad \mathbf{t}(\mathbf{A})$$

Inverse $AA^{-1} = A^{-1}A = I$ $\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ $\mathbf{A}^{-1} = \begin{bmatrix} -2.0 & 1.0 \\ 1.5 & -0.5 \end{bmatrix}$ solve(A) $\mathbf{I} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Variance-Covariance Matrix

$$\mathbf{S} = \begin{bmatrix} Var(x) & Cov(x,y) \\ Cov(x,y) & Var(y) \end{bmatrix} \quad \operatorname{cov}(\mathsf{X})$$

Exercise 7. Data Manipulation, Vectors & Matrices

- Load and attach the data mtcars again if needed. Save a subset of this dataframe to a new variable, car.sub. Include in this only cars with eight cylinders and the columns mpg, hp, qsec. Now, create the covariance matrix for this reduced dataset. Covariances are more interpretable when they are scaled as correlation coefficients, so use the cor() function to create a correlation matrix as well. What does this tell you about the variables?
- 2. For looking at correlations among variables, pairs() is a useful plotting function. Try pairs(car.sub).
- 3. Create a new dataset, x<- rnorm(30). Create a second variable, y, as x + rnorm(30, mean=0, sd=0.1). Make a scatterplot of x versus y. Does the result make sense? Test, using the function cor.test() if the two are significantly correlated. Now, compute cor.test(rank(x), rank(y)). This also called the Spearman rank correlation coefficient.</p>

If / else statements

Commands can be executed depending on some condition being TRUE, using if() and else

Multiple commands within a for() or if() statement need to grouped with curly braces {}.

```
if (x==4) {
    print ('Wow, x is not equal to 5!')
    print ('Gee, x is not equal to 3, either!')
    }
```

Writing Functions

- There are many functions built-in to R
- Sometimes, need to do something for which no function exists
- For example: people who wrote "vegan" wanted to rarefy and compute diversity metrics
- If it is a general enough task, it can be useful to write your own function

A totally unnecessary function...

The function to make functions is called function()

A more useful function: RMA

- Ordinary Least-squares regression assumes all error is in y-variable
- Often, x-variable has error too
- Reduced Major Axis draws a line that allows for error in both x and y

slope
$$b_1 = \pm s_y / s_x$$

intercept $b_0 = \overline{y} - b_1 \overline{x}$

Sourcing R scripts

- We have been entering commands, one at a time, at the interactive R prompt
- We can also write commands in a text file, and then tell R to do all of them consecutively
- The text file of commands = "script"

	Mac	Win			
Open Script	File > Open Document	File > Open Script			
Source Script	File > Source File	File > Source R Code			

Sourcing R scripts

One difference: expressions not printed by default Side note: syntax highlighting is really nice! Win Users: Rstudio (Mac, too)

Script style

Rule	Do	Do Not
Variable names concise & meaningful	ceph_len cephLen	x cephalon_length
Do not overwrite existing variables/functions		c <- 10 t <- 10 F <- TRUE
Put spaces around most operators except for : ,	x <- 1:10 a < 40 x <- Y[1,3] x <- Y[,3]	x<-1:10 a<40 x <- Y[,3]
Can use spaces for alignment	total <- a + b mn <- c + d	
Add comments for why, not what	<pre># total has within- and between group parts</pre>	# add a and b
Use commented spacer lines	######################################	
Line length <= 80 characters; indent with two spaces		From Wickham (2015)

Exercise 8. Conditionals, and Functions

- Write a function to compute a Reduced Major Axis. Have it accept as arguments two vectors, x and y, and have it return a vector of two elements: the intercept and slope of the RMA. Here are a few hints. Look at the earlier slide, and figure out all the quantities you need to know to compute the intercept and slope. You'll need the sign() function in order to know if the slope is positive or negative (check its help entry).
- 2. Create a fake data set as follows: x<- rnorm(100, 0, 1) and y<- x+rnorm(100,0,0.8). Make a scatterplot of x and y. Use your RMA function on these data, saving the result to res.rma. Now type abline(res.rma), and look again at your plot. Note: abline(res.rma) will only work if you have your RMA function return a vector of c(intercept, slope) as suggested in #1.</p>
- 3. Repeat #2, but with y <- rnorm(100, 0, 1), which will make y uncorrelated with x. Does the resulting RMA slope surprise you?
- 4. The function for computing a least-squares regression is lm(), which is short for linear model. Use this res.ls<- lm(y~x). Don't worry too much about this syntax now because we'll come back to it later on. Add the least-squares regression as a dashed, blue line: abline(res.ls, lty=2, col='blue'). The RMA slope should be steeper than the least squares slope.</p>

Importing Data (preliminaries)

- Preliminary: change the working directory via menu
 - Mac: Misc, Change Working Directory
 - Win: File, Change dir
- The data should be a clean rectangular matrix
- Must be plain text (ASCII), usually exported from Excel or a database program.
- It is advisable to have the first row be a header with names of the variables
- The first column may optionally be row names (labels)
- Example: look at cope.txt (Hunt & Roy 2006, PNAS)

Importing Data

Workhorse function: read.table()

```
cope<- read.table(file="cope.txt", header=TRUE)</pre>
```

It's a good idea to look at it to make sure import worked OK

соре	<pre># shows whole dataframe</pre>
cope[1:10,]	<pre># look at first 10 rows of dataframe</pre>
head(cope)	<pre># head shows top of any R object</pre>

Importing Data

Other variants: read.csv(), read.delim(); read.xls()
from package {gdata}

(useful if there are spaces *within* some fields)

Handy function: file.choose() # navigate to file

cope<- read.table(file=file.choose(), header=T)</pre>

attach(cope) # we'll use it for a while

Dataframe cope

Row names	5						Column names
Ļ	species	age	depth	mg.temp	n	valve.length	—
ant-M1	anteropunctatus	19.87	1962	6.31	2	673	
ant-T1	anteropunctatus	5.97	1545	3.75	3	663	
ant-T2	anteropunctatus	1.09	1545	1.65	1	706	
ant-E1	dinglei	37.06	1478	9.73	21	607	
ant-E2	dinglei	34.11	1478	8.46	16	580	
din-T3	dinglei	33.91	2318	8.37	2	623	

For ostracode genus *Poseidonamicus*, gives species assignment, age (Ma), bathymetric depth (m), paleotemperature (°C), sample size, and body size (valve length, in μ m) for 106 populations.

Factors

- Used to represent categorical data; by default, read.table() converts columns with characters into factors
- Factors look like strings, but are treated internally as indexes (integers) with factor names

species # example of a factor

- Factors have levels, which are the unique values it takes levels(species) # returns levels
 nlevels(species) # returns number of levels
- Factor levels may be ordered (e.g., low, med, high), which is important in some analyses (see ?factor and ?ordered)

- Sometimes want to convert one kind of data to another, e.g., a factor to character: as.character(species)
- Functions: as.xxx(), where xxx = type

as.numeric() as.character()

as.logical() as.factor()

- Useful trick using type conversion
 - When logical converted to numeric, $T \Rightarrow 1$; $F \Rightarrow 0$
 - Summing a logical vector yields number of TRUE's
 sum(species == "dinglei") # counts number of pop's
 # assigned to "dinglei"

Missing Data

Represented by a special character in R: NA

Many functions have an argument na.rm

- If TRUE, NA's are removed
- FALSE is usually default (function returns NA)
- median(x, na.rm=TRUE)

```
read.table(file, na.strings="NA")
na.strings="-999" # here, missing data are -999
```

Useful function: complete.cases(cope)

Returns logical vector, T for rows without missing data

cc<- complete.cases(cope) # see also na.omit()
cope.cc<- cope[cc,] # only rows w/o NA</pre>

Exercise 9. Factors, types, and missing data

- 1. Plot valve.length versus age in *Poseidonamicus* using a trick involving type conversion to easily give a different plotting symbol to each species.
- 2. How many of the populations in cope date from before 20 million years ago? Figure this out by applying sum() to a logical vector.
- 3. Create a new variable, x<- valve.length. Compute the median of x. Change the first observation of x to be missing data by x[1]<- NA. Compute the median of x now. How can you get the function median to ignore missing data in computing a median?</p>
- 4. Warning: factors and factor conversions can be tricky! Remember that, internally, they are integers, not strings. Take a look at cbind(cope\$species, as.character(cope\$species) to see the difference.

Packages

- R is modular, with functions and other objects separated into units called packages
- Some packages are always available: e.g., base, stats, graphics
- Others need to be made available using the function library(), or via the menus
- Many packages are installed by default, more can be downloaded and installed from within *R*.

000	CRAN Task Views	10 10				
+ @http://cran.	r-project.org/web/views/	C Q- Google				
භ ∭ SI Webaccess	Apple Yahoo! Google Maps YouTube Wikipedia News (37) ▼ Popular ▼	Apache andn Mac OS X Ride-on >>				
	(DAN Magh Views					
	CRAN TASK VIEWS					
<u>Bayesian</u>	Bayesian Inference					
ChemPhys	Chemometrics and Computational Physics					
ClinicalTrials	Clinical Trial Design, Monitoring, and Analysis					
Cluster	Cluster Analysis & Finite Mixture Models					
Distributions	Probability Distributions					
Econometrics	Computational Econometrics					
Environmetrics	Analysis of Ecological and Environmental Data					
ExperimentalDesign	Design of Experiments (DoE) & Analysis of Experimental Data					
Finance	Empirical Finance					
Genetics	Statistical Genetics					
Graphics	Graphic Displays & Dynamic Graphics & Graphic Devices & Visualization	1				
HighPerformanceComputing	g High-Performance and Parallel Computing with R					
MachineLearning	Machine Learning & Statistical Learning					
MedicalImaging	Medical Image Analysis					
Multivariate	Multivariate Statistics					
NaturalLanguageProcessing	Natural Language Processing					
OfficialStatistics	Official Statistics & Survey Methodology					
Optimization	Optimization and Mathematical Programming					
Pharmacokinetics	Analysis of Pharmacokinetic Data					
Phylogenetics	Phylogenetics, Especially Comparative Methods					
Psychometrics	Psychometric Models and Methods					
ReproducibleResearch	Reproducible Research					
Robust	Robust Statistical Methods					
SocialSciences	Statistics for the Social Sciences					
Spatial	Analysis of Spatial Data					
Survival	Survival Analysis					
TimeSeries	Time Series Analysis					
gR	gRaphical Models in R					
To automatically install these install.packages("ctv") library("ctv") and then the views can be ins up-to-date), e.g., install.views("Econometro or update.views("Econometro	e views, the ctv package needs to be installed, e.g., via stalled via install.views Of update.views (which first assesses which of t crics")	the packages are already installed and				

sk Views

Exercise 10. Packages, and additional exercise

- 1. Figure out how to install and load packages using the menus on your operating system. Practice by installing the the gdata package and the packages from the tidyverse: install.packages("tidyverse").
- 2. Practice some plotting using the cope data. Plot valve.length separately as a function of mg.temp and depth. Use the symbols() function to plot valve.length versus mg.temp, plotting circles proportional to depth. Use the argument inches to control to size of the circles (check the help function).
- Add the RMA line (using your function) to the cope plot of valve.length versus mg.temp. Add it to the plot as a blue line. Compute the least-squares slope and add it as a dotted (lty=3), red line.

Statistical Models

- R has special syntax for statistical models, and a lot of built-in capabilities
- Models represent (hypothesized) relationships among variables, usually one response (y) and one or more predictor (x) variables

<u>example</u>

Linear regression:

$$y = \beta_0 + \beta_1 x$$

$$\uparrow \qquad \uparrow$$
intercept slope

Linear Models

- Response variable is a linear function of predictor variable(s)
- Very common, includes regression & ANOVA

The function lm()

- Evaluates linear models for best fitting coefficients
- Returns a list with lots of information
- Example: linear regression

```
plot(mg.temp, valve.length)
w <- lm(valve.length ~ mg.temp, data = cope)</pre>
```

W # gives only coefficients & formula abline(w) # adds regression line to plot summary(w) # gives much more info: stats, P, etc. str(w) # gives terse view of all elements of w

> summary(w) ## summary of linear regression Call: lm(formula = valve.length ~ mg.temp)Residuals: Min 1Q Median 3Q Max -115.369 -44.431 8.367 45.486 104.234 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 764.639 10.125 75.522 < 2e-16 *** mg.temp -19.530 2.466 -7.918 2.77e-12 *** _ _ _ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 57.77 on 104 degrees of freedom Multiple R-Squared: 0.3761, Adjusted R-squared: 0.3701 F-statistic: 62.7 on 1 and 104 DF, p-value: 2.774e-12

Some information-extracting functions
resid(w) coef(w) fitted(w) confint()

ANOVA

Make fake groupings

gg <- rep(c("a", "b"), length.out=nrow(cope))
ggf<- factor(gg) # convert from character to factor</pre>

Compute linear model

w.a <- lm(valve.length ~ ggf, data=cope)
summary(w.a) # coefficients and p-values
anova(w.a) # standard ANOVA table (SSQ, MSQ, F-test)</pre>

Compute linear model

w.sp <- lm(valve.length ~ species, data=cope)
summary(w.sp) # coefficients and p-values
anova(w.sp) # standard ANOVA table (SSQ, MSQ, F-test)</pre>

Exercise 11. Statistical models

- Model notation is sometimes used in functions that do not directly involve statistical models. To see two examples, try the following commands: plot(valve.length ~ mg.temp), and plot(valve.length ~ species).
- 2. Look at the plot of valve.length as a function of mg.temp. Use abline() to add the line corresponding to the linear regression (w) to the plot. Does the linear regression seem adequate? In fact, the residuals are nonrandomly distributed. One common regression diagnostic is to plot the residuals versus the fitted values. Try this using the fitted() and resid() functions; put the fitted values on the horizontal axis. Use abline(h=0, lty=3) to put a dotted horizontal line at zero. From left to right, notice that the residuals are mostly positive, then mostly negative, then mostly positive.
- 3. Repeat the symbol plot from exercise 10.3: symbols(mg.temp,
 valve.length, circles=depth, inches=0.3). What does this show? Add
 the regression line for w again. This plot seems to suggest that depth is having
 some effect on body size (note the size of the points above and below the line).
- 4. To incorporate depth, perform a multiple regression in which mg.temp and depth are jointly used to predict valve.length; save the results to a variable called w.td. ls mg.temp still significant? How about depth? Redo the diagnostic plot looking at fitted and residual values. Does adding the extra variable result in better-looking residuals? Note that, in terms of interpretation, both of these variables reflect temperature: mg.temp is a proxy for global deepwater temperature, and, at any point in time, deeper waters are colder than shallower waters.
- 5. FYI: try plot(w), which shows several useful diagnostic plots for regressions.

Im(valve.length ~ mg.temp)

Looping Basics

Situation

You have a set of objects (sites, species, measurements, etc.) and you want to do some computation to each one

The function that makes loops is for ()

Looping Basics

Usually, you want to save information with each pass, and so you need to set up an array to store that information

```
femur <- c(10, 8, 14, 22, 32) # 5 femora lengths
```

```
log.femur <- array(dim=5) # set up new variable</pre>
```

```
2 for (i in 1:5){
    log.femur[i] <- log(femur[i])</pre>
                                                 set up variable to save computations
}
                                                  figure out indices to loop over
                                                  do calculations; save into results array
```

Here, looping is not necessary log.femur <- log(femur)

Apply-family of functions

- Set of functions that allow one to perform operations over chunks/subsets of the data
- Avoids loops (can be much faster)
- Different functions for different data structures

apply(X, MARGIN, FUN)

X < - matrix(1:12, nrow = 3, ncol = 4)

[1,] [2,] [3,]	[,1] 1 2 3	[,2] 4 5 6	[,3] 7 8 9	[,4] 10 11 12		[1,] [2,] [3,]	[,1] <u>1</u> 2 3	[,2] <u>4</u> 5 6	[,3] 7 8 9	[,4] <u>10</u> 11 12) -) -
apply(X,	MARG	[N = 2,	FUN	= sum)	ć	apply(X	(, MAR	GIN =	1, F	UN =	sum)

6 15 24 33

22 26 30

<pre># shortcuts</pre>
colSums(X)
colMeans(X)
rowSums(X)
rowMeans(X)
Other versions

lapply() and sapply() operate over lists repeatedly call FUN to each element of a list

```
## make a list of t-tests
 tl <- list()</pre>
 for(i in 1:100){
   tl[[i]] <- t.test(rnorm(100), rnorm(100))</pre>
 }
## look at str(tl[[1]]) to see components
ff <- function(x) x$p.value # extract p.value element</pre>
pvl <- lapply(tl, ff)</pre>
pvs <- sapply(tl, ff) # same, but converts to vector</pre>
```

pvs <- sapply(tl, "[[", "p.value") # another way to do extraction</pre>

Other versions

version	notes
sapply(X, FUN)	like lapply() but s implifies output to vector or matrix
tapply(X, INDEX, FUN)	applies FUN over subgroups defined by factor INDEX
mapply(FUN, …)	m ultivariate version - accepts more than one list or vector as arguments, drawn from
<pre>mclapply(X, FUN)</pre>	parallel (m ulti c ore) version of lapply(); in package {parallel}. [not Windows, see parLapply() instead.]

Exercise 12. Looping

- Use a loop to go through all the species in the Cope dataset and compute the mean valve.length for each species. Save these mean valve lengths to a vector.
- 2. Question #1 can be done much more simply using tapply(). Do so, referring to the help page as needed.
- 3. Go back to mtcars. Compute average mpg separately for each 4, 6 and 8 cylinder cars.
- 4. Apply and similar functions are sometimes -- but not always -- faster than loops. Test this with a large matrix, M <- matrix(rnorm(1e6), nrow = 1e2, ncol = 1e4). There is a helper function, system.time(expr), that tells you how much time it takes R to execute the R command expr. Use this to time how long it takes to compute column sums using apply, and then using a for loop. You'll want to write a new function to do the column sums using a loop so that it can be used as the argument to system.time().</p>

Classes in R

- R is sometimes referred to as an 'object-oriented' language
- Everything you create in R is an object: functions, variables, etc.
- Classes are categories of objects. Many standard ones: numbers, character strings, arrays, dataframes, lists.
- The class() function tells you an object's class.

class(1.4) # "numeric"
class(cope) # "dataframe"
class(TRUE) # "logical"

Classes in R

• There are also more specialized classes

```
x <- rnorm(50); y <- rnorm(50)
w <- lm(y ~ x)
class(w) # "lm"</pre>
```

- Some functions are generic, meaning they call specialized versions depending on the class of the argument
- Common generics include: plot(), print(), summary(); specialized versions are of the form function.class()

```
plot.lm()
print.lm()
```

Exercise answers follow

Exercise Answers

Ex 1: (1) x<- 46; xx<- (x/2)⁴ (2) y<- TRUE; y<- "Cambrian"

Ex 2: (1) XX<- matrix(1:12, nrow=3, ncol=4); y<- XX[3,] (2) y2<- 10*y (3) number of columns of XX (=4)

Ex 3: (2) dim(mtcars) (3) mean(mtcars\$mpg); median(mtcars\$mpg); (4) mtcars[,1:2]; mtcars[,c(1,4)]; mtcars[1:10,]; mtcars[1:10, 1:3] (5) RelPower<- mtcars\$hp/mtcars\$wt</pre>

Ex 4: (1) attach(mtcars); mean(mpg[wt>3]); mean(mpg[wt<3]) (2) hp[wt<3 & mpg>=25] (3) muscle<- hp>200; rn<rownames(mtcars); rn[muscle]</pre>

Ex 5: (1) attach(mtcars) (2) plot(mpg, hp, pch=3, col="red") (4) pcol=rep("red", times=nrow(mtcars));
pcol[am == 1] <- "blue"; plot(mpg, hp, pch=21, bg=pcol, cex=2) OR: plot(mpg, hp, pch=21, bg=am+1, cex=2) (6)
plot(mpg, qsec); identify(mpg, qsec) (7) identify(mpg, qsec, labels=rownames(mtcars))</pre>

Ex 6: (1) seq(0,20,5); seq(0,200, length.out=30) (2) xn<- (x-mean(x))/sd(x) (3) 5% of the time (3) dim(Animals) (4) attach(Animals); plot(body, brain, log="xy"); title("Brain size allometry") (5) dumb<identify(body, brain)

Ex 7: (1) car.sub<- mtcars[mtcars\$cyl==8, c('mpg', 'hp', 'qsec')]; SS<- cov(car.sub); RR<- cor(car.sub)</pre>

Ex 8: See next page.

Ex 9: (1) plot(age, valve.length, pch=as.numeric(species)); legend(x="topright", pch=1:19, levels(species), cex=0.6) (2) sum(cope\$age>20) (3) median(x, na.rm=TRUE)

Ex 10: (2) symbols(cope\$mg.temp, cope\$valve.length, circles=cope\$depth, inches=0.3)

Ex 11: (2) plot(fitted(w), resid(w)) (4) w.td<- lm(valve.length ~ mg.temp + depth)</pre>

Ex 12: (1) See next page. (2) tapply(valve.length, INDEX = species, FUN = mean) (3) tapply(mtcars\$mpg, INDEX=mtcars\$cyl, FUN=sum) (4) See next page.

```
# Reduced major axis (Ex. 8-1)
RMA<- function(x,y)
{
# compute needed summary statistics
mx \leftarrow mean(x)
 my \ll mean(y)
 sx \leftarrow sd(x)
 sy <- sd(y)
 rxy <- cor(x,y)
 # compute slope and intercept
 b1 <- sy / sx * sign(rxy)</pre>
 b0 <- my - b1 * mx
 # combine slope and intercept into a vector
 result<- c(b0, b1)
 return(result)
                  # abline(result) will work!
```

```
## speed of loops versus apply (Ex. 12-4)
M <- matrix(rnorm(1e6), nrow=1e2, ncol=1e4)
system.time(apply(M, 2, sum)) # 0.033 sec on my machine
system.time(colSums(M))  # much faster! 0.001 sec
# now, using loops
loopColSum <- function(M){
   nc <- ncol(M)
   cm <- array(dim=nc)  # vector to store colsums
   for(i in 1:nc) cm[i]<- sum(M[,i])  # loop thru columns, get each sum
    return(cm)
}
system.time(loopColSum(M)) # faster than apply, 0.02 sec on my machine
```

```
# Looping example (Ex. 12-1)
lsp<- levels(species)  # all species names
nsp<- nlevels(species)  # number of species
mn.len<- array(dim=nsp)  # vector to store mean lengths by species
names(mn.len)<- lsp  # give the vector elements names for the species
for(i in 1:nsp){
    sub <- species == lsp[i]
    mn.len[i] <- mean(valve.length[sub])
}</pre>
```